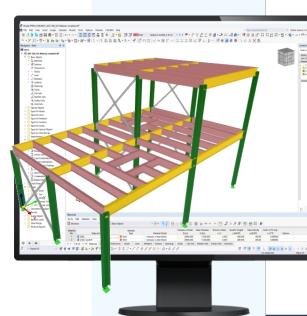
Structural Analysis & Design Software

Amy Heilig, **PE**

CEO – USA Office

Alex Bacon, EIT

Technical Support Engineer



Cisca Tjoa, PE Moderator

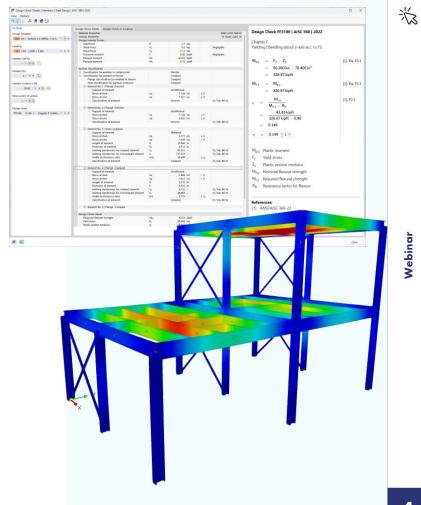
Technical Support Engineer

Webinar

AISC 360/ 341-22 Steel Member **Design in RFEM 6**

Questions During the Presentation

GoToWebinar Control Panel **Desktop**


Show or hide control panel	File View Help - Audio Sound Computer audio	_□ば× ™ Check ■■ ? ← Adjust au settings
	Computer addition O Phone call MUTED	,
		~
		~
	▼ Questions	5
Ask questions	[Enter a question for staff]	
	Webinar ID: 373-901-5	

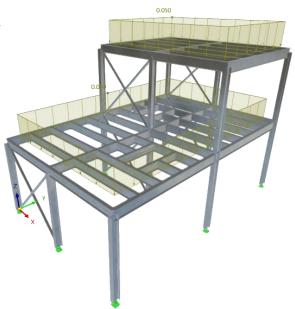
怸

Content

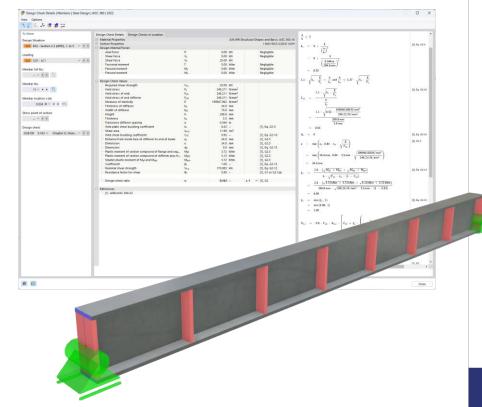
- Introduction RFEM 6 and Add-ons for steel design 01
- 02 New AISC 360-22 standard updates
- 03 New AISC 341-22 seismic member checks
- 04 Example structure input data and workflow
- 05 **Detailed design results review**

Steel Design in RFEM 6

Construction Stage Analysis

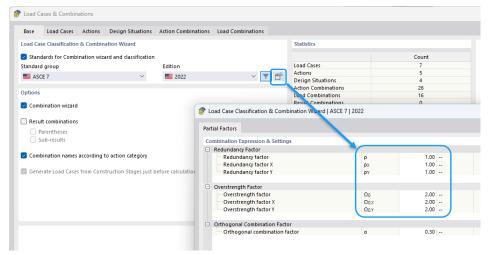

etc.

怸


AISC 360-22 Updates

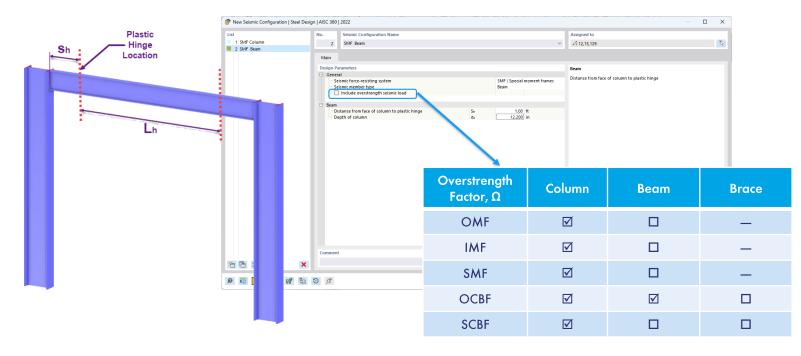
- Sect. C2.3(b) Adjustments to Stiffness
 - "Stiffness Adjustment Parameter" ($au_{
 m b}$) Eqn. C2-2b
 - P_{ns} compressive strength for slender-elements, $P_{ns} = F_y A_e$, A_e from E7 with $F_n = F_y$
- Ch. E Members for Compression
 - "Critical Stress" (F_{cr}) variable revised to "Nominal Stress" (F_n)
- F6.2 I-Shaped Members and Channels Bent about their Minor Axis | Flange Local Buckling
 - Slender Flanges Eqn. F6-4 Critical Stress (F_{cr}) 0.70 multiplier modification
- F7.2 Square and Rectangular HSS and Box Sections
 - Flange Local Buckling Eqn. F7-2 format revision only
 - Web Local Buckling Eqn. F7-6 format revision only

AISC 360-22 Updates (cont'd)


- F11.1 Rectangular Bars and Rounds | Yielding
 - Eqn. F11-1 applies to rectangular bars
 - Eqn. F11-2 applies to round bars
- G2.3 I-Shaped Members and Channels | Shear Strength of End Web Panels with a/h ≤ 3 Considering Tension Field Action
 - New! Nominal shear strength for end web panels including the effects of tension field action for Isections w/ equal and unequal web flanges
- H3.2 HSS Subjected to Combined Torsion, Shear, Flexure and Axial Force
 - Eqn. H3-6 Shear ratio, V_r/V_c, now taken as the larger value for the major- or minor-axis

Input Parameters in RFEM 6

Overstrength and Redundancy Factors


- Overstrength, Ω
 - Amplification factor applied to the forces in certain elements that must remain elastic
 - Ω = 3 (moment), 2 (braced) [ASCE 7-22 Table 12.2-1]
- Redundancy, ρ
 - A penalty factor for less redundant structures
 - ρ = 1.0 or 1.3 [ASCE 7-22 Sect. 12.3.4]
 - For members without overstrength, Ω

Seismic Configuration Input for Steel Design

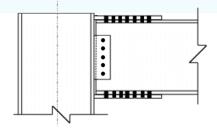
Overstrength Requirements (AISC 341-22 Sect. D1.4a & F1.5c)

AISC 341-22 Member Design Checks

- Member ductility requirements (AISC 341-22 Table D1.1)
- Slenderness ratio checks for SMF column, OCBF and SCBF braces
- Stability bracing of beams (Seismic Requirements output – next slide)

AISC Seismic Design Manual Table 1-2 Summary of Member Ductility Requirements											
System Type	Highly Ductile λ _{hd}	Moderately Ductile λ _{md}	No Ductility Requirements per AISC Seismic Provisions	AISC Seismic Provisions Section Reference							
Ordinary Moment Frame (OMF)			•	E1.5a							
Intermediate Moment Frame (IMF)											
Beams		•		E2.5a							
Columns		•		E2.5a							
Special Moment Frame (SMF)											
Beams	•			E3.5a							
Columns	•			E3.5a							
Ordinary Concentrically Braced Frames (OCBF)											
Diagonal Braces		•		F1.5a							
Special Concentrically Braced Frames (SCBF) Diagonal Braces	•			F2.5a							
Beams	•			F2.5a							
Columns	•			F2.5a							

AISC 341-22 Member Design Checks (cont'd)


Stability Bracing of Beams (Sec D1.2a & F2.4)

Go To	Edit Selection	n View Se	ettings													
📌 Steel	Design	~	 Image: Image: A market of the second second	ismic Requi	rements		~	• • 5	ς 🔎			🗐 👰 🖵 👼 🏌	8			
Member						2			(quired Strength		quired Strength		quired Stiffness
No.	SFRS	Ry []	Fy [ksi]	Zy [in ³]	rz [in]	Ze [in ³]	αs []	Cd []	h _o [in]	Lbr [ft]	Pbr [kip]	Reference	Pr [kip]	Reference	β _{br} [kip/in]	Reference
11	IMF	1.10	50.0	78.400	1.270	78.400	1.00	1.00	17.375	9.49	4.96	AISC 360-22, Eq. A-6-7	14.89	AISC 341-22, Eq. D1-4	29.067	AISC 360-22, Eq. A-6-8
15	SMF	1.10	50.0	78.400	1.270	78.400	1.00	1.00	17.375	4.80	4.96	AISC 360-22, Eq. A-6-7	14.89	AISC 341-22, Eq. D1-4	57.459	AISC 360-22, Eq. A-6-8
33	SCBF	1.10	50.0	78.400	1.270	78.400	1.00	1.00	17.375	9.49	4.96	AISC 360-22, Eq. A-6-7			29.067	AISC 360-22, Eq. A-6-8
⊌ ⊲ 1	of3 ▶ H	Stability Braci	ng by Member	Moment F	Frame Conn	ection by Me	mber Bra	ice Connecti	ion by Mem	ber						

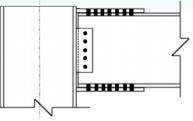
		IMF	SMF	SCBF
L_{br}	Maximum spacing of stability beam bracing	$L_{\rm b}=0.17r_{\rm y}E/(R_{\rm y}F_{\rm y})$	$L_{\rm b}=0.086r_{\rm y}E/(R_{\rm y}F_{\rm y})$	$L_{\rm b}=0.17r_{\rm y}E/(R_{\rm y}F_{\rm y})$
\mathbf{P}_{br}	Required strength of stability beam bracing	$P_{\rm br} = 0.02 \ (M_r C_d / h_o)$	$P_{\rm br} = 0.02 \ (M_r C_d / h_o)$	$P_{\rm br} = 0.02 \ (M_r C_d / h_o)$
Pr	Required strength of stability beam bracing at plastic hinge	$P_r = 0.06 R_y F_y Z / (\alpha_s h_o)$	$P_r = 0.06 R_y F_y Z / (\alpha_s h_o)$	
β_{br}	Required stiffness of stability beam bracing	$\beta_{br} = 1/\Phi (10M_rC_d/L_{br}h_o)$	$\beta_{br} = 1/\Phi (10M_rC_d/L_{br}h_o)$	$\beta_{br}=1/\Phi~(10M_rC_d/L_{br}h_o)$

Moment Frames - Flexural and Shear Strength

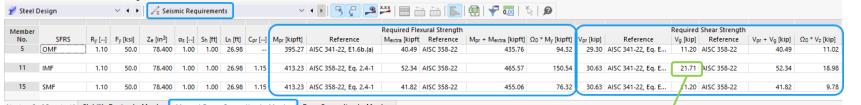
Requirements for	Beam-to-Column	Connection by	Member
------------------	----------------	---------------	--------

Go To Edit Selection View Settings

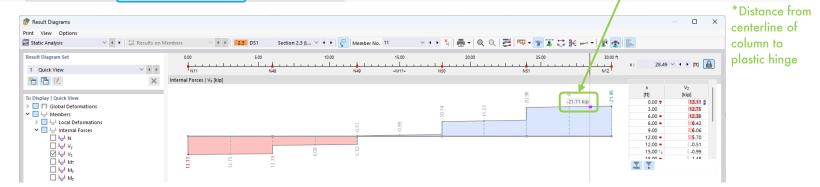
				·			_			•• 55										
Member											Required Fle	xural Strength					Required	Shear Strength		
No.	SFRS	Ry []	Fy [ksi]	Ze [in ³]	α _s []	Sh [ft]	L _h [ft]	Cpr []	Mpr [kipft]	Reference	Mextra [kipft	Reference	Mpr + Mextra [kipft]	Ω ₀ * M _y [kipft]	V _{pr} [kip]	Reference	Vg [kip]	Reference	Vpr + Vg [kip]	Ω ₀ * V _z [kip
5	OMF] 1.10	50.0	78.400	1.00	1.00	26.98		395.27	AISC 341-22, E1.6b.(a)	40.49	AISC 358-22	435.76	94.32	29.30	AISC 341-22, Eq. E	11.20	AISC 358-22	40.49	11.0
11	IMF	1.10	50.0	78.400	1.00	1.00	26.98	1.15	413.23	AISC 358-22, Eq. 2.4-1	52.34	AISC 358-22	465.57	150.54	30.63	AISC 341-22, Eq. E	21.71	AISC 358-22	52.34	18.9
15	SMF	1.10	50.0	78.400	1.00	1.00	26.98	1.15	413.23	AISC 358-22, Eq. 2.4-1	41.82	AISC 358-22	455.06	76.32	30.63	AISC 341-22, Eq. E	11.20	AISC 358-22	41.82	9.7


Factor to account for peak connection strength (strain hardening) per AISC 358 $(F_y+F_y)/(2F_y) \le 1.2$

OMF IMF/SMF Probable maximum moment at plastic hinge Mpr 1.1R_vF_vZ_e C_{pr}R_vF_vZ_e Extra moment due to shear force at hinge location $(V_{pr}+V_{q})*S_{h}$ $(V_{pr}+V_{q})*S_{h}$ Mextra Moment demand based on the worst case of the overstrength COs $\Omega_{0}M$ V_{pr} Shear required to produce Mpr $2M_{pr}/L_{h}$ $2M_{pr}/L_{h}$ ٧_g Shear at plastic hinge location from gravity loads $\Omega_{0}V$ Shear demand based on the worst case of the overstrength COs


Required Connection Strength (cont'd)

Moment Frames - Flexural and Shear Strength



Requirements for Beam-to-Column Connection by Member

Go To Edit Selection View Settings

H 🔺 2 of 3 🕨 H Stability Bracing by Member Moment Frame Connection by Member Brace Connection by Member

Required Connection Strength (cont'd)

Braced Frames - Tensile and Compressive Strength

Requirem	Requirements for Brace Connection by Member									
Go To Edit Selection View Settings										
💅 Steel D	Design	~	🔹 🖌 🏹 Se	ismic Requir	ements		× • • • • • •	2 🎮 🛄 🛅	🗾 👰 🖵 🖥	
Member						(Required Connect	ion Tensile Strength	Required Connectio	on Compressive Strength
No.	SFRS	Ry []	Fy [ksi]	Ag [in ²]	αs []	Fne [ksi]	Ry * Fy * Ag / αs [kip]	Reference	Fne * Ag / αs [kip]	Reference
75	OCBF] 1.50	36.0	15.100	1.00	6.623	815.40	AISC 341-22, F1.6a	100.00	AISC 341-22, F1.6a
76	SCBF	1.50	36.0	19.000	1.00	10.032	1026.00	AISC 341-22, F2.6c	217.34	AISC 341-22, F2.6c
H 4 3 (4 4 3 of 3 → H Stability Bracing by Member Moment Frame Connection by Member						Brace Connection by	Member		

- **R**_y Ratio of expected yield stress to the specified minimum yield stress
- Fy Specified minimum yield stress
- A_g Gross area of brace
- α_s LRFD-ASD force level adjustment factor = 1.0 for LRFD and 1.5 for ASD
- \mathbf{F}_{ne} Flexural buckling nominal stress using R_yF_y [Fne = (0.658(RyFy/Fe)) RyFy]
- **R**_y**F**_y**A**_g/α_s Expected brace strength in tension
- $F_{ne}A_g/\alpha_s$ Expected brace strength in compression for OCBF
- $1.14 \; F_{\rm ne} A_g / \alpha_s \;$ Expected brace strength in compression for SCBF

*Note: The capacity-limited design of columns and beams for SCBF based on the expected brace strength is currently not implemented in RFEM. This capability will be added in the future.

AISC 341 Updates

AISC 341 Updates	n RFEM 6	2016	2022		
		Table D1.1 One Table	Two Tables: Table D1.1a - Diagonal Braces Table D1.1b - All Other Members		
Ductility Requireme Width-to-Thickness R [Table D1.1]		More Conservative $\lambda_{hd}and\lambda_{md}$	Less Conservative λ_{hd} and λ_{md}		
[1000 0 111]		$C_{\alpha} = \alpha_{s} P_{r} / (R_{y} F_{y} A_{g})$ $\alpha_{s} = 1.0 \text{ (LRFD) and } 1.5 \text{ (ASD)}$	$C_{a} = P_{u} / (\Phi_{c} P_{y}) \text{ (LRFD)}$ $C_{a} = \Omega_{c} P_{a} / P_{y} \text{ (ASD)}$ $P_{y} = R_{y} F_{y} A_{g}$		
Stability Bracing of Beams	IMF & SCBF [D1.2a.1.(c)]	$L_{b} = 0.19r_{y}E/(R_{y}F_{y})$	$L_{b} = 0.17r_{y}E/(R_{y}F_{y})$		
(max spacing)	SMF [D1.2b]	$L_{b} = 0.095r_{y}E/(R_{y}F_{y})$	$L_{b} = 0.086r_{y}E/(R_{y}F_{y})$		
OCBF Brace Connection Compressive Strength	1.1 Factor Removed [F1.6a.(c)]	1.1 $F_{cre}A_g/\alpha_s$	$F_{ne}A_g/\alpha_s$		

AISC 341 Knowledge Base Articles & FAQs

- KB 001761 | AISC 341 Seismic Design in RFEM 6
- KB 001767 | AISC 341-16 Moment Frame Member Design in RFEM 6
- KB 001875 | AISC 341-22 Moment Frame Member Design in RFEM 6
- KB 001768 | AISC 341-16 Moment Frame Connection Strength in RFEM 6
- KB 001775 | AISC 341 Braced Frame Design in RFEM 6
- FAQ 005324 | Which limit state types are applicable for the AISC 341 seismic design?
- FAQ 005320 | How do I include the overstrength factor(s) Ωo in the ASCE 7 load combinations?
- FAQ 005319 | How do I include the redundancy factor(s) ρ in the ASCE 7 load combinations?

Dlubal Software Information

Visit website www.dlubal.com

- Videos and recorded webinars
- Events and conferences
- Knowledge Base articles
- 🔸 FAQs

er for Do ne Fre ing

Download Free 90-Day Trial

Dlubal Software, Inc. 30 South 15th Street 15th Floor Philadelphia, PA 19102 Phone: (267) 702-2815 Email: info-us@dlubal.com

Schedule an Online Demo with Us!

Gain valuable insight from one of our experts.

Contact Our Sales Team

怸

Webinars and PDH

Upcoming Webinars

Register www.dlubal.com

Support & Learning -> Webinars

3

Registration through email

PDH Certificates

Automatically emailed to participants

Available for the full presentation

Additional attendees request PDH to info-us@dlubal.com

Continuing Education Certificate

For successfully completing the webinar: Introduction to the New RFEM 6

Didad Schware, Inc. The Gustiere Bestern, 20 Societ, 226 Trees 1256 Faces, Milliongolas, 7A 79707

1.0 Professional Development Hose (1 PDH)

induction to integrated design Addisor new of analysis and design results

John Smith

Instructor(s) Any Hellia, PF Course conte

Course date Thu, Nov 11, 202

www.dlubal.com