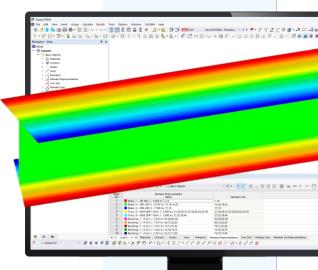


Structural Analysis & Design Software

Dipl.-Ing. (FH) Andreas Hörold Organizer

Marketing & Public Relations
Dlubal Software GmbH



Dr.-Ing. Jonas BienCo-Organizer

Product Engineering & Customer Support Dlubal Software GmbH Webinar

Consideration of Torsional Warping in

RFEM 6 and RSTAB 9

춨

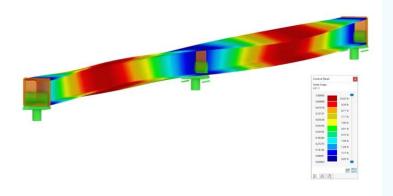
Adjust audio

settings

QuestionsDuring thePresentation

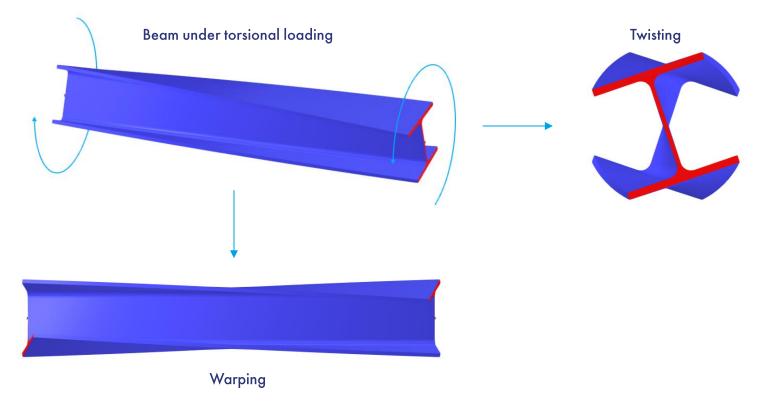
GoToWebinar Control Panel **Desktop**

E-mail: info@dlubal.com


Content

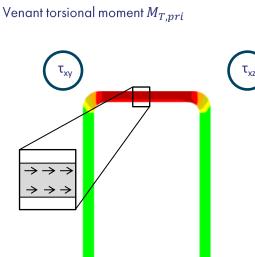
Ol Basics of Torsional Warping

Things to consider for a 7 DOF calculation in RFEM 6 and RSTAB 9


O3 Influence of Torsional Warping on selected structures

$\overset{\sim}{\sim}$

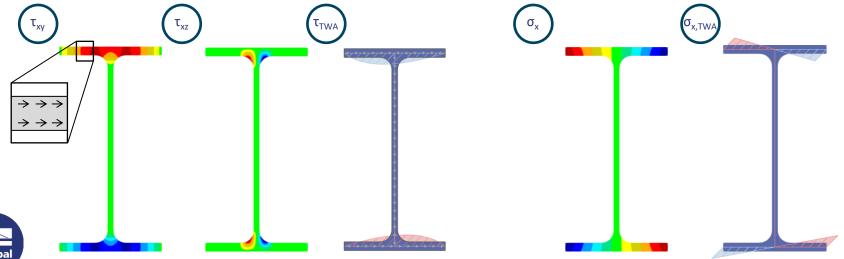
General Case: Mixed Torsion



$\not \precsim$

St. Venant Torsion (6 DOF)

- Pure section rotation due to primary / St. Venant /pure torsion
- St. Venant torsion generates (primary) shear stresses
- Integral of primary shear stresses is equal to the primary / St. Venant torsional moment $M_{T,pri}$



Warping Torsion (7 DOF)

- Section warping (non uniform elongation of the section fibres)
- Restraint warping generates axial warping stresses and for equilibrium reasons (secondary) shear stresses
- Integral of the axial warping stresses is equal to the warping moment Mω [Force x Area, e.g. kNm²]
- Integral of secondary shear stresses is equal to the secondary torsional moment M_{T,sec}
- Relation between warping moment and secondary torsional moment $M'_{\omega}=M_{T,sec}$ (Analogy to bending theory e.g. $M'_{y}=V_{z}$)

炭

Webinar

Essential equations

Torsional differential equation

$$M_T = M_{T,pri} + M_{T,sec}$$

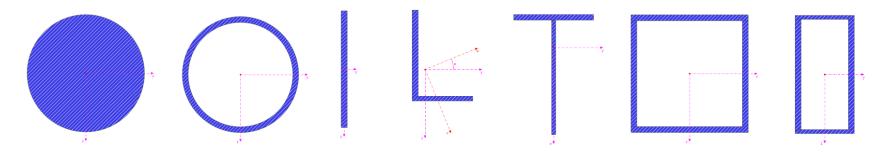
$$M_T = G * I_t * \varphi_x' + E * I_{\omega} * \varphi_x'''$$

Torsional stiffness

Warping stiffness

Member constant for torsion

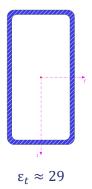
$$\varepsilon_t = L * \sqrt{\frac{GI_t}{EI_{\omega}}}$$

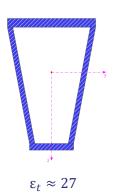

G Shear modulus E Modulus of elasticity I_t Torsional constant I_{ω} Warping constant φ_x Beam rotation φ_x' Beam twist

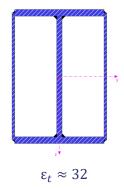
L Member length

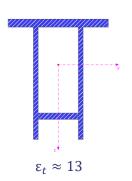
Influence of the section shape

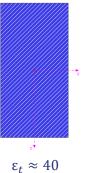
- 1. Category: Warping-free Sections
 - Circular hollow/solid section
 - Thin-walled cross sections whose profile centre lines meet at one point
 - Quadratic hollow section with constant thickness
 - Special case: Rectangular hollow section with specific dimensions

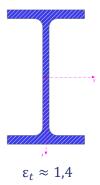


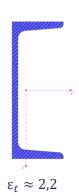


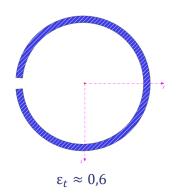


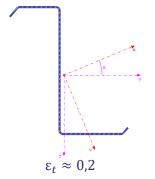

Influence of the section shape

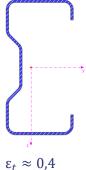

- 1. Category: Warping-free Sections
- 2. Category: Cross sections with minor Warping
 - All closed sections (one or multiple cells)
 - Solid sections (with exceptions)
 - Common assumption [4]: $\varepsilon_t > 10$

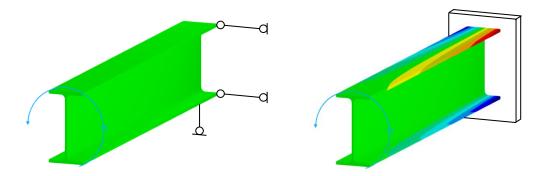







Influence of the section shape

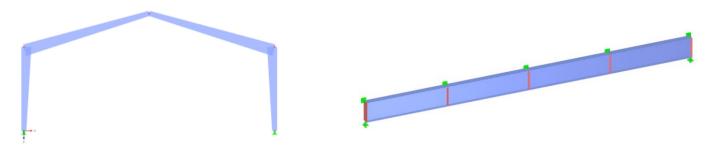

- 1. Category: Warping-free Sections
- 2. Category: Cross sections with minor Warping
- 3. Category: **Non-warping-free** Sections
 - All open sections that do not fit into 1. Category



Types of warping restraint

Free warping is restrained in case...

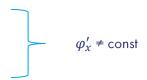
... warping boundary conditions are introduced

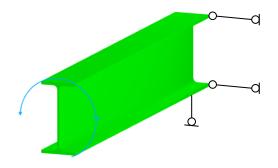


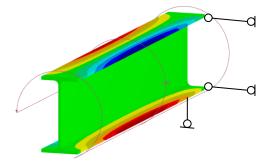
Types of warping restraint

Free warping is restrained in case...

- ... warping boundary conditions are introduced
- ... the torsional / warping stiffness changes along a member

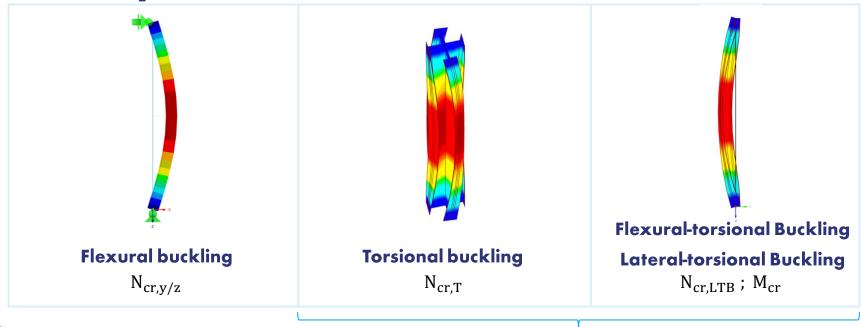





Types of warping restraint

Free warping is restrained in case...

- ... warping boundary conditions are introduced
- ... the torsional / warping stiffness changes along a member
- ... the torsional moment is not constant



Warping torsion is relevant for **non-warping-free** sections that are **loaded in torsion** and have some type of **warping restraint**!

Stability modes of beams

Warping torsion required to account for those modes in static / stability analysis!

/ebina

Summary

- In the general case, two types of torsion load bearing mechanisms are observed in members loaded in torsion
- Warping torsion is relevant for ...
 - ... non-warping-free Sections ...
 - ... with warping restraint ($\varphi'_x \neq \text{const}$).
- In this case, the consideration of warping torsion has an effect on:
 - Deformations
 - Stresses
 - Internal Forces
- Only with 7 DOFs and under consideration of II./III. Order theory, the relationship between bending and torsion is correctly considered. "Indirect" torsion from biaxial bending is not captured with 6 FG, nor are the stability cases of torsional and lateral-torsional buckling
- Important when using the Add-On "Torsional Warping" in RFEM 6 und RSTAB 9:
 - By default, loads and boundary conditions act in the centre of gravity of a section
 - By default, warping is not assumed to be continuous when connecting members (warping hinge)
 - Discrete warping restraints/-springs can be considered by defining transverse stiffeners on members/member sets
 - More information is given in our >> Online Manual<<

Further reading

- [1] Educational videos ETH Zürich: https://youtu.be/TiO7WFzdqPE?feature=shared
- [2] E-Learning platform TU Graz: https://www.tugraz.at/institute/isb/lehre/e-learning
- [3] Hughes et. al.: Design of Steel Beams in Torsion, SCI Publication P385, 2011
- [4] Kindmann & Kraus.: Steel Structures Design using FEM, 2011

$\overset{\sim}{\sim}$

Online Courses

RFEM 6 Master Class

All you need to know for a start!

TO THE RFEM COURSE

Eurocode 2 Master Class

Deep Dive in Reinforced Concrete Design with RFEM 6!

TO THE EC 2 COURSE

Eurocode 3 Master Class

Deep Dive in Steel Design with RFEM 6!

TO THE EC 3 COURSE

淤

Free Online Services

Geo-Zone Tool

Dlubal Software provides an online tool with snow, wind and seismic zone maps.

Dlubal

Cross-Section Properties

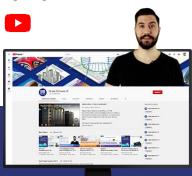
With this free online tool, you can select standardized sections from an extensive section library, define parametrized cross-sections and calculate its cross-section properties.

FAQs & **Knowledge Base**

Access frequently asked questions commonly submitted to our customer support team and view helpful tips and tricks articles to improve your work.

Models to **Download**

Download numerous example files here that will help you to get started and become familiar with the Dlubal programs.



Free Online Services

Youtube Channel -Webinars, Videos

Videos and webinars about the structural engineering software.

Webshop with **Prices**

Configure your individual program package and get all prices online!

Trial Licenses

The best way how to learn using our programs is to simply test them for yourself. Download a

We offer free

and chat

support via email

Get Further Details About Dlubal

Visit website www.dlubal.com

- Videos and recorded webinars
- → Newsletters
- Events and conferences
- Knowledge Base articles

See Dlubal Software in action in a webinar

Download free trial license

Phone: +49 9673 9203-0 E-mail: info@dlubal.com

www.dlubal.com