No módulo Análise geotécnica, está disponível o modelo de material de alta qualidade "Modelo de endurecimento de solo modificado". Este modelo de material é adequado para uma variedade de solos e é capaz de representar com precisão suficiente as seguintes propriedades do solo real:
Dependência da tensão da rigidez do solo
Dependência da trajetória da carga da rigidez do solo
Deformações plásticas antes de a condição limite ser atingida
Aumento da resistência ao corte com aumento da compactação
Aumento do limite de cedência com tensão crescente até à condição de cedência limite
Critério de rotura segundo Mohr-Coulomb
Pode encontrar mais informação sobre este modelo de material e a definição da entrada no RFEM no capítulo correspondente do manual online do módulo Análise geotécnica.
A opção "Criar células de superfície através de aberturas" está disponível no menu de contexto da superfície. Isto permite criar facilmente, por exemplo, linhas para pilares de paredes de painéis de madeira (utilizando o tipo de espessura "Painel de viga").
No módulo Dimensionamento de betão para o RFEM 6, pode realizar o dimensionamento da resistência ao fogo para paredes e lajes de betão armado de acordo com o método de tabelas simplificado (EN 1992-1-2, Secção 5.4.2 e Tabelas 5.8 e 5.9).
No RFEM e no RSTAB, é possível visualizar as magnitudes de campo de fluxo da pressão, da velocidade, da energia de turbulência cinética e da taxa de dissipação da turbulência para a simulação de vento.
Os planos de recorte estão alinhados com a respetiva direção do vento.
Tem secções individuais dos pilares e geometrias de paredes angulares e necessita de uma verificação ao punçoamento para as mesmas?
Não tem qualquer problema. No RFEM 6, é possível realizar verificações ao punçoamento não apenas para secções retangulares e circulares, mas também para qualquer forma de secção.
No módulo Análise das fases de construção (CSA), pode utilizar secções compostas designadas por secções de fase. Isto permite ativar e desativar partes do tipo de secção "Paramétricas – Maciças II" durante as fases de construção.
Dimensionamento de cinco tipos de sistemas resistentes a forças sísmicas (SFRS): )
Verificação da ductilidade da relação largura-espessura para almas e banzos
Cálculo da resistência e rigidez necessárias para o contraventamento de estabilidade de vigas
Cálculo do espaçamento máximo para contraventamento de estabilidade de vigas
Cálculo da resistência necessária nas articulações para o contraventamento de estabilidade de vigas
Cálculo da resistência necessária do pilar com a opção de negligenciar todos os momentos fletores, corte e torção para o estado limite de sobrerresistência
Verificação das relações de esbelteza para pilares e contraventamentos
O resultado do dimensionamento sísmico é categorizado em duas secções: requisitos das barras e requisitos das ligações.
Os "Requisitos sísmicos" incluem a resistência à flexão necessária e a resistência ao corte necessária da ligação viga-pilar para pórticos de momento. Estas estão listadas no separador 'Ligação de pórtico de momentos por barra'. Para pórticos reforçados, a resistência à tração necessária da ligação e a resistência à compressão necessária da ligação do contraventamento estão listadas no separador 'Ligação de contraventamento por barra'.
O programa fornece as verificações realizadas em tabelas. Os detalhes de dimensionamento mostram claramente as fórmulas e as referências à norma.
Com o tipo de espessura "Painel de viga", é possível modelar elementos de painel de madeira no espaço 3D. Basta definir a geometria da superfície e os elementos de painel de madeira são gerados através de uma estrutura barra-superfície interna que inclui a simulação da flexibilidade da ligação. O tipo de espessura Placa de viga é definido utilizando o módulo Superfícies multicamadas.
Um "painel de viga" oferece as seguintes vantagens:
Possibilidade de revestimento de um e dos dois lados
Cálculo automático de um acoplamento semi-rígido
Revestimento em painéis de madeira
Revestimento grampeado
Revestimento definido pelo utilizador
Representação como um objeto 3D geométrico completo (pórtico, travessa, pilar, chapa, grampos), incluindo excentricidade
Consideração de aberturas através de células de superfície
Dimensionamento dos elementos estruturais utilizando o módulo Dimensionamento de madeira
Independentemente do material (por exemplo, paredes de gesso com perfis formados a frio e placas de fibra de gesso como revestimento)
Globale 3D-Berechnung des Gesamtmodells, in welchem die Decken als starre Ebene (Diaphragma) oder als Biegeplatte modelliert werden
Lokale 2D-Berechnung der einzelnen Geschossdecken
Die Ergebnisse der Stützen und Wände aus der 3D-Berechnung und die Ergebnisse der Decken aus der 2D-Berechnung werden nach der Berechnung in einem einzigen Modell zusammengefasst. Dadurch muss zwischen dem 3D-Modell und der einzelnen 2D-Modellen der Decken nicht gewechselt werden. Der Anwender arbeitet nur mit einem Model, spart wertvolle Zeit und vermeidet eventuelle Fehler beim händischen Datenaustausch zwischen dem 3D-Modell und der einzelnen 2D-Decken-Modelle.
Die vertikalen Flächen im Modell können vom Nutzer in Schubwände (Shear Walls) und Öffnungsstürze (Sprandels) geteilt werden. Aus diesen Wandobjekten erzeugt das Programm automatisch interne Ergebnisstäbe, so dass diese dann nach der gewünschten Norm im Add-On Betonbemessung für RFEM 6 als Stäbe bemessen werden können.
As paredes de corte e as vigas-parede do modelo do edifício estão disponíveis como objetos independentes nos módulos de dimensionamento. Desta forma, é possível uma filtragem mais rápida dos objetos nos resultados, bem como uma melhor documentação no relatório de impressão.
As chapas de capitel podem ser inseridas nas ligações de aço fazendo apenas alguns cliques com o rato. Os dados podem ser introduzidos utilizando os tipos de definição "Desvios" ou "Dimensões e posição" disponíveis. Ao especificar uma barra de referência e o plano de corte, também é possível omitir o componente Corte de barra.
Com este componente, pode modelar facilmente chapas de capitel em extremidades de pilares, por exemplo.
Pode abrir secções através de uma ligação direta no RSECTION, modificá-las e transferi-las de volta para o RFEM/RSTAB. Tanto as secções do RSECTION como as secções da base de dados, com exceção das traves elípticas, semi-elípticas e virtuais, podem ser abertas e alteradas diretamente no RSECTION através do botão.
Esta função permite, por exemplo, manipular a disposição de armaduras de secções RSECTION definidas pelo utilizador diretamente através do RFEM/RSTAB num ambiente RSECTION aberto localmente. Esta função atualmente apenas se encontra disponível para secções com um tipo de distribuição uniforme. A armadura longitudinal e de corte definida para as secções da base de dados não é importada para o RSECTION.
O componente "Corte de chapa" pode ser utilizado para cortar chapas (por exemplo, chapas de gusset, aletas etc.). Para isso, existem vários métodos de corte à sua disposição:
Plano: O corte é realizado na superfície mais próxima da chapa de referência.
Superfície: Apenas são cortas as partes que se cruzam das chapas.
Caixa delimitadora: A dimensão mais externa constituída pela largura e altura é cortada da chapa como um retângulo.
Envolvente convexa: A casca exterior da secção é utilizada para o corte da chapa. Se existem arredondamentos nos nós de canto da secção, o corte é adaptado aos mesmos.
No RSECTION, a "verificação do estado limite último plástico é realizado | Simplex-Methode" neben der Variation der Normalspannungen die gleichzeitige Variation der Schubspannungen über die Querschnittsfläche. Mit dieser erweiterten Analyseform können Sie vor allem für schubbelastete Querschnitte Umverteilungsreserven nutzen und somit die Querschnitte noch effizienter belasten.
No módulo Ligações de aço, pode utilizar o componente "Sólido auxiliar" para realizar cortes precisos em lajes e elementos estruturais. Com este componente, podem ser utilizadas as formas de caixa, cilindro ou qualquer secção transversal como objeto auxiliar.
No módulo Ligações de aço, pode ligar secções ocas circulares utilizando soldaduras.
É possível ligar as secções circulares entre si ou a componentes planos. Os arredondamentos de secções padronizadas e de parede fina também podem ser ligados por uma soldadura.
No módulo "Ligações de aço", pode considerar o pré-esforço dos parafusos no cálculo para todos os componentes. O pré-esforço pode ser ativado facilmente através da caixa de seleção nos parâmetros dos parafusos e tem impacto na análise tensão-deformação e na análise da rigidez.
Os parafusos pré-esforçados são parafusos especiais utilizados em estruturas de aço para gerar uma força de aperto elevada entre os componentes estruturais ligados. Esta força de aperto provoca atrito entre os componentes estruturais, o que permite a transferência de forças.
Funcionalidade Os parafusos pré-esforçados são aplicados com um determinado binário, alongando-os e gerando uma força de tração. Esta força de tração é transferida para os componentes ligados e gera uma elevada força de aperto. A força de aperto evita que a ligação se solte e garante uma transmissão fiável da força.
Vantagens
Capacidade de carga elevada: os parafusos pré-esforçados permitem transferir forças elevadas.
Baixa deformação: minimizam a deformação da ligação.
Resistência à fadiga : são resistentes à fadiga.
Simplicidade de montagem: são relativamente fáceis de montar e desmontar.
Cálculo e dimensionamento O cálculo dos parafusos pré-esforçados é realizado no RFEM utilizando o modelo de análise EF gerado pelo módulo "Ligações de aço". Considera a força de aperto, o atrito entre os componentes estruturais, a resistência ao corte dos parafusos e a capacidade de carga dos componentes estruturais. O dimensionamento é realizado de acordo com DIN EN 1993-1-8 (Eurocódigo 3) ou a norma dos EUA ANSI/AISC 360-16. O modelo de análise criado, incluindo os resultados, pode ser guardado e utilizado como um modelo independente do RFEM.
No separador "Armadura de corte", pode selecionar a opção "Travessa sobre varões livres com seleção ativa no gráfico". Pode assim dispor travessas adicionais em varões livres da armadura longitudinal.
A posição das travessas pode ser ativada ou desativada no gráfico de informação. As travessas são aplicadas para as verificações do estado limite último e para as verificações estruturais. Estas estão disponíveis para dimensionamento de acordo com a EN 1992-1-1.
Os resultados do RWIND podem ser apresentados diretamente no programa principal. No Navegador – Resultados, selecione o tipo de resultado "Análise de simulação de vento" a partir da lista acima.
Atualmente, estão disponíveis os seguintes resultados referentes à malha de cálculo do RWIND:
Pode considerar uma redução do esforço de corte para os apoios de cálculo. Desta forma, pode realizar a verificação ao corte com o esforço de corte determinante a uma distância igual à da altura da viga desde a borda de apoio.
No módulo Dimensionamento de betão, pode dimensionar qualquer secção RSECTION. O recobrimento de betão, a armadura longitudinal e de corte são definidos diretamente no RSECTION.
Após importar a secção RSECTION reforçada para o RFEM 6 ou o RSTAB 9, pode utilizá-la para o dimensionamento no módulo Dimensionamento de betão.
No módulo Ligações de aço, pode dimensionar ligações de barras com secções compostas. Além disso, pode realizar verificações de ligações para quase todas as secções de parede fina na biblioteca do RFEM.
Para superfícies de madeira com o tipo de espessura "Constante", é considerado o fator de fissura kcr e, portanto, a influência negativa das fissuras na resistência ao corte.
Para determinar a resistência ao corte dos parafusos, pode utilizar o módulo Ligações de aço para especificar se existe uma espiga ou uma rosca no plano de corte.