Exemplos de verificação

A single-mass system with clearance and two springs is initially deflected. Determine the natural oscillations of the system - deflection, velocity and acceleration time course.

This verification example is based on Verification Example 0122. A single-mass system without damping is subjected to an axial loading force. An ideal elastic-plastic material with characteristics is assumed. Determine the time course of the end-point deflection, velocity and acceleration.

A single-mass system with dashpot is subjected to a constant loading force. Determine the spring force, the damping force and the inertial force at given test time. In this verification example, the Kelvin--Voigt dashpot, namely, a spring and a damper element in serial connection, is decomposed into its purely viscous and purely elastic parts, in order to better evaluate the reaction forces.

A single mass system with dashpot is subjected to the constant loading force. Determine the deflection and the velocity of the dashpot endpoint in given test time.

The mathematical pendulum consists of a zero‑weight rope and a mass point at its end. The pendulum is initially deflected. Determine the angle of the rope at given test time.

A thin string is tensioned by the initial strain and initially deflected. Determine the deflection of the test point at given test times.

A double-mass oscillator consists of two linear springs and masses, which are concentrated at the nodes. The self-weight of the springs is neglected. Determine the natural frequencies of the system.

A simple oscillator consists of mass m (considered only in x-direction) and linear spring of stiffness k. The mass is embedded on a surface with Coulomb friction and is loaded by constant-in-time axial and transversal forces.

A double‑mass system consists of two shafts and two masses represented by the corresponding moments of inertia, concentrated in given distance as nodal masses. The left shaft is fixed, and the right mass is free. Neglecting the self‑weight of the shafts, determine the torsional natural frequencies of the system.

A cantilever of rectangular cross‑section has a mass at its end. Furthermore, it is loaded by an axial force. Calculate the natural frequency of the structure. Neglect the self‑weight of the cantilever and consider the influence of axial force for the stiffness modification.

1 - 10 de 23

Procurar exemplo


Programa / módulo


Modelo de material


Método de cálculo


Entidade do modelo


Função especial

Newsletter

Receba regularmente informação sobre novidades, dicas úteis, eventos planeados, ofertas especiais e vales.

Apoio ao cliente a toda hora

Base de dados de conhecimento

Para além do serviço de apoio técnico (p. ex. via chat), pode encontrar na nossa página de Internet material de apoio que pode ser útil para os seus trabalhos com o software Dlubal.