

Program: RFEM 5, RSTAB 8, RF-STABILITY, RSBUCK

Category: Isotropic Linear Elasticity, Stability, Member

Verification Example: 0005 – Stability of a Beam with Various Support Stiffness

0005 – Stability of a Beam with Various Support Stiffness

Description

An axially loaded steel beam with a square cross-section is pinned at one end and spring supported at the other. Two cases with different spring stiffness k_A and k_B are considered. Neglecting its self-weight, determine the critical load scaling factors b_A and b_B by the linear stability analysis.

Material	Steel	Modulus of Elasticity	Ε	200.00	GPa
		Poisson's Ratio	ν	0.300	-
Geometry	Beam	Height Width	d	0.010	m
		Length	L	1.000	m
Spring	Case A	Stiffness	k _A	1.000	kN/m
	Case B	Stiffness	k _B	2.000	kN/m
Load		Force	F	0.100	kN

Figure 1: Problem sketch

Analytical Solution

Critical load scaling factor *b* can be defined as:

$$b = \frac{F_{\rm k}}{F} \tag{5-1}$$

where F_k is a critical load, which can be evaluated from the general solution of the differential equation for the deflection of the neutral axis:

$$u_{z}(x) = A + Bx + C\sin\left(\sqrt{\frac{F_{k}}{EI}}x\right) + D\cos\left(\sqrt{\frac{F_{k}}{EI}}x\right)$$
(5 - 2)

where $I = \frac{d^4}{12}$ is the second moment of the area. By setting $\alpha = \sqrt{\frac{F_k}{El}}$ equation (5 – 2) can be rewritten as follows:

$$u_{z}(x) = A + Bx + C\sin(\alpha x) + D\cos(\alpha x)$$
(5 - 3)

Verification Example: 0005 – Stability of a Beam with Various Support Stiffness

Equation's (5 – 3) derivatives up to the third order can be given:

$$\frac{du_z}{dx} = B + C\alpha \cos(\alpha x) - D\alpha \sin(\alpha x)$$
 (5 - 4)

$$\frac{d^2 u_z}{dx^2} = -C\alpha^2 \sin(\alpha x) - D\alpha^2 \cos(\alpha x)$$
 (5-5)

$$\frac{d^3 u_z}{dx^3} = -C\alpha^3 \cos(\alpha x) + D\alpha^3 \sin(\alpha x)$$
(5-6)

Coefficients A, B, C, and D can be evaluated from the following boundary conditions:

$$x = 0:$$
 $u_z = 0$ (5 - 7)

$$\frac{\mathrm{d}^2 u_z}{\mathrm{d} x^2} = 0 \tag{5-8}$$

$$x = L: \qquad u_z = 0 \tag{5-9}$$

$$\frac{d^3 u_z}{dx^3} + \alpha \frac{du_z}{dx} - \beta u_z = 0$$
 (5 - 10)

where $\beta = \frac{k}{El}$. Condition (5 – 10) can be obtained from the force equilibrium at the tip of the beam (Figure Figure 2) while expressing the shear force *V* in the terms of the displacement u_z and its derivatives:

Figure 2: Force equilibrium at the tip of the beam

$$V = EI \frac{d^3 u_z}{dx^3} + F_k \frac{du_z}{dx}$$
(5 - 11)

Substituting equations (5 - 3) - (5 - 6) into the equations (5 - 7) - (5 - 10) following four linear homogeneous equations can be obtained:

A + D = 0	(5 – 12)
D = 0	(5 – 13)
$c^2 \sin(cl) C = 0$	(5 13)
$\alpha^2 \sin(\alpha z) c = 0$	(5 – 14)
$(\alpha^2 - \beta L)B - \sin(\alpha L)C = 0$	(5 – 15)

From equations (5 – 13) and (5 – 12) it is obvious that D = 0 and A = 0. To obtain non trivial solution, it will be considered that $B \neq 0$ and $C \neq 0$. By setting their determinant equal to zero following equation can be obtained:

Verification Example: 0005 – Stability of a Beam with Various Support Stiffness

$$\left(\frac{F_{\rm k}}{kL}-1\right)\sin\sqrt{\frac{F_{\rm k}L^2}{EI}}=0$$
(5 - 16)

Following expressions for the critical force F_k can be evaluated according to the equation (5 – 16):

$$F_{\rm k} = kL \tag{5-17}$$

$$F_{\rm k} = \frac{\pi^2 E I}{L^2}, \frac{4\pi^2 E I}{L^2}, \frac{9\pi^2 E I}{L^2}, \dots$$
(5 - 18)

To find the lowest critical force, it has to be determined if the following equation is valid:

$$k < \frac{\pi^2 E I}{L^3} = 1.645 \text{ kN/m}$$
 (5 – 19)

For the Case A, where $k_A = 1.000$ kN/m < 1.645 kN/m, equation (5 – 17) should be considered and critical load scaling factor b_A can be evaluated as follows:

$$b_{\rm A} = \frac{kL}{F} = 10.000$$
 (5 - 20)

For the Case B, where $k_{\rm B} = 2.000$ kN/m > 1.645 kN/m, equation (5 – 18) should be considered and critical load scaling factor $b_{\rm B}$ can be evaluated as follows:

$$b_{\rm B} = \frac{\pi^2 E I}{L^2 F} = 16.449 \tag{5-21}$$

RFEM 5 and RSTAB 8 Settings

- Modeled in version RFEM 5.04.0058 and RSTAB 8.04.0058
- The element size is $I_{\rm FE} = 0.100 \, {\rm m}$
- The number of increments is 1
- Shear stiffness of members is deactivated
- Isotropic linear elastic material model is used

Results

Structure File	Program	Spring Stiffness		
0005.01	RF-STABILITY	$k_{\rm a}$ = 1 kN/m		
0005.02	RF-STABILITY	$k_{\rm b}$ = 2 kN/m		
0005.03	RSBUCK	$k_{\rm a}$ = 1 kN/m		
0005.04	RSBUCK	$k_{\rm b}$ = 2 kN/m		

Verification Example: 0005 – Stability of a Beam with Various Support Stiffness

As can be seen from the following comparisons, an excellent agreement of analytical solution with numerical output was achieved:

Spring Stiffness	Analytical Solution	RF-STABILITY	IBILITY	RSBUCK	
	b [-]	b [-]	Ratio [-]	b [-]	Ratio [-]
$k_{\rm a} = 1$ kN/m	10.000	10.000	1.000	10.000	1.000
$k_{\rm b}=2$ kN/m	16.449	16.449	1.000	16.450	1.000

