Program: RFEM 5

Category: Geometrically Linear Analysis, Orthotropic Plasticity, Plate, Solid

Verification Example: 0010 - One-dimensional Orthotropic Plasticity - 4 Columns

0010 - One-dimensional Orthotropic Plasticity - 4 Columns

Description

Four columns with width d, depth d, height h and distance d between them are oriented in the direction of the Z-axis. They are fixed at the bottom and connected by the rigid block at the top. Block is loaded by the pressure p in the Z-direction and modeled by an elastic material with high modulus of elasticity E_{r}. Outer columns are modeled as orthotropic elastic material and inner columns as orthotropic elastic-plastic material with the same elastic parameters as outer columns and with plasticity properties defined according to the Tsai-Wu plasticity theory. Material fibers are oriented by angles -45° and 45° (Figure 1). Assuming only small deformations theory and neglecting structure's self-weight, determine its maximum deflection.

Material	Columns	Modulus of	$E_{x}=E_{y}$	3000.000	MPa
		Elasticity	E_{z}	11000.000	MPa
		Poisson's Ratio	$\nu_{x y}=\nu_{x z}=\nu_{y z}$	0.000	-
		Shear Modulus	$G_{x y}=G_{x z}=G_{y z}$	5500.000	MPa
	Inner Columns Plasticity	Tensile Plastic Strength	$f_{\mathrm{t}, x}=f_{\mathrm{t}, z}$	3.000	MPa
			$f_{t, y}$	2.121	MPa
		Compressive Plastic Strength	$f_{c, \chi}=f_{c, z}$	3.000	MPa
			$f_{c, y}$	2.121	MPa
		Shear Tensile Plastic Strength	$f_{v, x y}=f_{v, x z}=f_{v, y z}$	99999.000	MPa
	Block	Modulus of Elasticity	E_{r}	20000000.000	MPa
		Poisson's Ratio	ν_{r}	0.000	-
Geometry	Column	Height	h	1.000	m
		Depth Width Distance	d	0.050	m
	Block	Height	d	0.050	m
		Width	7d	0.350	m
Load		Pressure	p	4.571	MPa

Verification Example: 0010-One-dimensional Orthotropic Plasticity - 4 Columns

Figure 1: Problem sketch

Analytical Solution

Linear Analysis

Formula for the maximum displacement can be evaluated with the use of the transformed stiffness matrix into the loading direction (see verification example 0007 for the detailed description):

$$
\begin{equation*}
u_{\max }=\sigma_{L} h\left(\frac{\sin ^{4} \beta}{E_{x}}+\frac{\cos ^{4} \beta}{E_{z}}+\frac{\sin ^{2} \beta \cos ^{2} \beta}{G_{x z}}\right) \tag{10-1}
\end{equation*}
$$

where σ_{L} is the loading pressure per one column:

$$
\begin{equation*}
\sigma_{L}=\frac{7 p d^{2}}{4 d^{2}}=\frac{7}{4} p \tag{10-2}
\end{equation*}
$$

Nonlinear Analysis

The maximum deformation of the structure can be obtained by:

$$
\begin{equation*}
u_{\max }=h \varepsilon=h \frac{\sigma_{\mathrm{el}}}{E_{\mathrm{eff}}} \tag{10-3}
\end{equation*}
$$

where $E_{\text {eff }}$ is the corresponding effective modulus of elasticity in the Z-direction:

$$
\begin{equation*}
E_{\mathrm{eff}}=\frac{\sigma_{L}}{u_{Z, \max }} \tag{10-4}
\end{equation*}
$$

where $u_{Z, \text { max }}$ is the elastic deformation of one column in the Z-direction and can be described same as in (10-1):

$$
\begin{equation*}
u_{z, \max }=\sigma_{\mathrm{el}} h\left(\frac{\sin ^{4} \beta}{E_{x}}+\frac{\cos ^{4} \beta}{E_{z}}+\frac{\sin ^{2} \beta \cos ^{2} \beta}{G_{x z}}\right) \tag{10-5}
\end{equation*}
$$

where $\sigma_{\text {el }}$ is the stress in the elastic column:

$$
\begin{equation*}
\sigma_{\mathrm{el}}=2 \sigma_{\mathrm{L}}-\sigma_{Z, \mathrm{el}} \tag{10-6}
\end{equation*}
$$

where $\sigma_{Z, \text { el }}$ is the stress in the plastic column, which under these circumstances can be expressed according to the Tsai-Wu surface condition as follows (see verification example 0009 for the detailed description):

$$
\begin{equation*}
\sigma_{z, \mathrm{el}}=\sqrt{2 f_{\mathrm{t}, \mathrm{z}} f_{\mathrm{c}, \mathrm{z}}} \tag{10-7}
\end{equation*}
$$

Substituting those formulae into the equation (10-3), the maximum deformation can be obtained:

$$
u_{\max }=h^{2}\left(\frac{\sin ^{4} \beta}{E_{x}}+\frac{\cos ^{4} \beta}{E_{z}}+\frac{\sin ^{2} \beta \cos ^{2} \beta}{G_{x z}}\right)\left(\frac{7}{2} p-\sqrt{2 f_{\mathrm{t}, \mathrm{z}} f_{c, z}}\right)=1.781 \mathrm{~mm} \quad(10-8)
$$

RFEM 5 Settings

- Modeled in version RFEM 5.03.0050
- The element size is $I_{\mathrm{FE}}=0.025 \mathrm{~m}$
- Geometrically linear analysis is considered
- The number of increments is 5

Results

Structure File	Entity	Material Model
0010.01	Solid	Orthotropic Plastic 3D
0010.02	Plate	Orthotropic Plastic 2D
0010.03	Solid	Orthotropic Elastic 3D
0010.04	Plate	Orthotropic Elastic 2D

Figure 2: Model and results in RFEM 5
As can be seen from the following comparisons, good agreements of analytical result and outputs from RFEM were achieved.

Linear Analysis

Analytical Solution	RFEM 5 Orthotropic Elastic 3D		RFEM 5 Orthotropic Elastic 2D	
$u_{\max }$ $[\mathrm{mm}]$	$u_{\max }$ $[\mathrm{mm}]$	Ratio $[-]$	$u_{\max }$ $[\mathrm{mm}]$	Ratio $[-]$
1.212	1.206	0.995	1.206	0.995

Nonlinear Analysis

Analytical Solution	RFEM 5		RFEM 5	
$u_{\max }$ $[\mathrm{mm}]$	$u_{\max }$ $[\mathrm{mm}]$	Ratio $[-]$	$u_{\max }$ $[\mathrm{mm}]$	Ratio $[-]$
1.781	1.772	0.995	1.773	0.996

