Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Plate

Verification Example: 0016 – Elastic Bending - Continuous Load

0016 – Elastic Bending - Continuous Load

Description

A thin plate is fully fixed on the left end (x = 0) and is subjected to a uniform pressure p according to the **Figure 1**. The problem is described by the following set of parameters.

Material	Elastic-Plastic	Modulus of Elasticity	Ε	210000.000	MPa
		Poisson's Ratio	ν	0.000	
		Shear Modulus	G	105000.000	MPa
Geometry	Plate	Length	L	1.000	m
		Width	w	0.050	m
		Thickness	t	0.005	m
Load	Plate	Pressure	p	2750.000	Ра

Small deformations are considered and the self-weight is neglected in this example. Determine the maximum deflection $u_{z,max}$. The aim of this example is to show that a surface of the surface stiffness type *Without Membrane Tension* behaves linearly under bending.

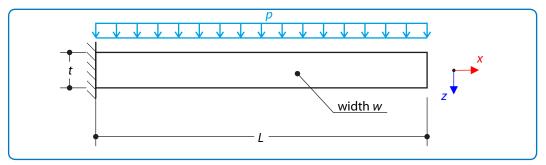


Figure 1: Problem sketch

Analytical Solution

The bending moment *M* for the plate under continuous loading q = pw is defined by

$$M = -\frac{q(L-x)^2}{2}$$
(16 - 1)

Verification Example: 0016 – Elastic Bending - Continuous Load

Recalling the elementary equation for the beam deflection using the Euler-Bernoulli theory

$$EI_y \frac{d^2 u_z}{dx^2} = M \tag{16-2}$$

where I_v is the quadratic moment of a cross-section with respect to the y-axis and it is given by

$$I_y = \frac{wt^3}{12}$$
 (16 - 3)

We integrate the equation (16 – 2) from 0 to *L* twice. Upon applying the boundary conditions for cantilever beam $u_z(0) = u_z'(0) = 0$, the solution takes the following form

$$J_{z}(x) = \frac{qx^{2}(6L^{2} - 4Lx + x^{2})}{24EI_{y}}$$
(16 - 4)

The maximum displacement occurs at the point x = L:

$$u_{z,\max} = \frac{qL^4}{8EI_v} = \frac{3pL^4}{2Ew^2t} = 157.143 \text{ mm}$$
 (16 - 5)

RFEM Settings

- Modeled in RFEM 5.04 and RFEM 6.01
- The element size is $I_{\rm FE} = 0.020$ m
- Geometrically linear analysis is considered
- The Mindlin plate theory is used
- Isotropic linear elastic material model is used

Results

Structure File	Program	Surface Stiffness Type	
0016.01	RFEM 5, RFEM 6	Standard	
0016.02	RFEM 5, RFEM 6	Without Tension	

Surface Stiffness Type	Analytical Solution	RFEM 5		RFEM 6	
	u _{z,max} [mm]	u _{z,max} [mm]	Ratio [—]	u _{z,max} [mm]	Ratio [—]
Standard	157.143	157.130	1.000	157.125	1.000
Without Membrane Tension		157.150	1.000	157.125	1.000

