Program: RFEM 5, RSTAB 8

Category: Large Deformation Analysis, Isotropic Linear Elasticity, Member

Verification Example: 0044 – Geometric Non-Linearity of Member with Spring

0044 - Geometric Non-Linearity of Member with Spring

Description

Slightly sloped member is loaded with the force *F* and held by spring with the stiffness *k* at one end and supported according to the **Figure 1**. Assuming large deformations and neglecting member's self-weight, determine its maximum upward deflection u_z .

Material	Steel	Modulus of Elasticity	Ε	210.000	GPa
		Poisson's Ratio	ν	0.300	_
Geometry	Beam	Height	h	0.100	m
		Width	b	0.100	m
		Horizontal Length	L _x	2.500	m
		Vertical Length	Lz	0.025	m
Spring		Stiffness	k	1	kN/m
Load		Force	F	1	kN

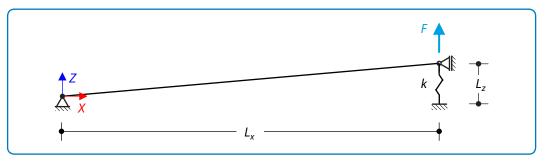


Figure 1: Problem sketch [1]

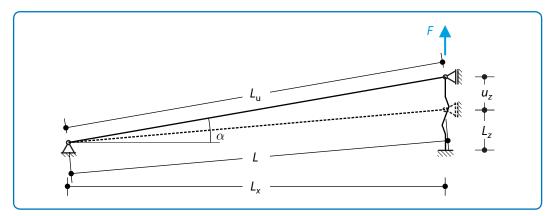


Figure 2: Deformed member

Verification Example: 0044 – Geometric Non-Linearity of Member with Spring

Analytical Solution

According to the Figure 2 vertical equilibrium condition can be compiled:

$$F = N\sin\alpha + ku_z = \frac{N(L_z + u_z)}{L_u} + ku_z \approx \frac{N(L_z + u_z)}{L} + ku_z$$
(44 - 1)

where N is the normal force of the member, which can be expressed as:

$$N = EA\varepsilon \tag{44-2}$$

where A = bh is the cross-section area and ε is the axial strain of the member. Assuming that α is small, the strain ε can be evaluated by Pythagoras's theorem as follows:

$$\varepsilon = \frac{\sqrt{(L_z + u_z)^2 + L_x^2} - \sqrt{L_x^2 + L_z^2}}{\sqrt{L_x^2 + L_z^2}} \approx \frac{1}{L_x^2} \left(L_z u_z + \frac{1}{2} u_z \right) \approx \frac{1}{L^2} \left(L_z u_z + \frac{1}{2} u_z \right)$$
(44 - 3)

Using formulae (44 – 2) and (44 – 3), the cubic function of the displacement u_z can be obtained from equation (44 – 1):

$$u_z^3 + 3L_z u_z^2 + 2\left(L_z^2 + \frac{kL^3}{EA}\right)u_z - \frac{2FL^3}{EA} = 0$$
 (44-4)

The equation (44 – 4) has only one real root:

$$u_z = 7.792 \text{ mm}$$
 (44 – 5)

RFEM 5 and RSTAB 8 Settings

- Modeled in version RFEM 5.04.0058 and RSTAB 8.04.0058
- The element size is $I_{FE} = 0.250 \text{ m}$
- Large deformation analysis is considered
- The number of increments is 1
- Isotropic linear elastic material model is used
- Shear stiffness of members is activated
- Member division for large deformation or post-critical analysis is activated

Results

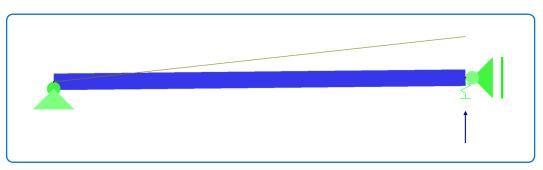


Figure 3: RFEM 5 Model

Verification Example - 0044 © Dlubal Software 2015

Verification Example: 0044 – Geometric Non-Linearity of Member with Spring

Structure File	Program
0044.01	RFEM 5
0044.02	RSTAB 8

As can be seen from the following comparison, an excellent agreement of analytical solution with numerical outputs was achieved:

Analytical Solution	RFE	M 5	RSTAB 8	
<i>u_z</i> [mm]	u _z [mm]	Ratio [-]	u _z [mm]	Ratio [-]
7.792	7.792	1.000	7.792	1.000

References

[1] CRISFIELD, M. A. Non-linear Finite Element Analysis of Solids and Structures. John Wiley & Sons Ltd..