Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Structural Nonlin-

 earity, Member
Verification Example: 0055 - Scaffolding Nodal Support

0055 - Scaffolding Nodal Support

Description

Consider a rigid scaffolding tube, fixed at the bottom using the Scaffolding Nodal Support and loaded by both a moment \boldsymbol{M} and a force of magnitude P_{z}. Self-weight is not considered. The problem is described by the following set of input parameters.

Material	Steel	Modulus of Elasticity	E	210.000	GPa
Geometry	Scaffolding tube	Length	L	1.000	m
		Cross-Section		RO244.5×25	
Loading	Scaffolding tube	Moment	$M_{1{ }_{\text {x }}}$	0.000	kNm
			$M_{11_{r}}$	1.000	kNm
			$M_{2 \times}$	$\frac{\sqrt{2}}{2}$	kNm
			$M_{2 r}$	$\frac{\sqrt{2}}{2}$	kNm
		Force	P_{Z}	50.000	kN
Support properties	Scaffolding Nodal Support	Maximal Eccentricity	$e_{\text {max }}$	0.025	m
		Stiffness	C	20.000	kNm/rad

Example presumptions:

- Boundary conditions $u_{x}=u_{y}=u_{z}=\varphi_{z}=0$ for $z=0$
- The behaviour of the Scaffolding Nodal Support depends on a M-Phi diagram, where $M=e P_{z}$ in accordance with ČSN EN 12811-1 norm [1]. See Figure 2.

Consider infinitely rigid beam and determine maximum radial deflection $u_{r, \max }=\sqrt{u_{x, \max }{ }^{2}+u_{y, \max }{ }^{2}}$ of the structure in two cases:

- Firstly, consider a moment $\boldsymbol{M}_{1}=\left[M_{1_{x}}, M_{1_{y}}, 0\right]=[0,1,0]$ acting around Y -axis.
- Secondly, consider more general moment $\boldsymbol{M}_{2}=\left[M_{2_{x}}, M_{2_{2}}, 0\right]=\left[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right]$. See Figure 1 for orientation.

Determine the above quantities using a beam with RO244.5×25 cross-section. Such beam is a suitable model of a physically unrealistic ideally rigid beam.

Verification Example: 0055 - Scaffolding Nodal Support

Figure 1: Problem Sketch and Solution

Figure 2: Relationship between magnitude of moment $M=e P_{z}$ and angle φ for $P_{z}=1 \mathrm{~N}$. In this case the value of moment equals the value of Eccentricity. The same diagram is used in RFEM to define a non-linearity of Scaffolding Nodal Support.

Verification Example: 0055 - Scaffolding Nodal Support

Figure 3: Relationship between magnitude of moment $M=e P_{z}$ and angle φ for $P_{z}=50 \mathrm{kN}$.

Analytical Solution

The problem presents a simplified model where the tube is considered rigid. Thus we can get the solution of both cases immediately by reading the values from Figure 3.

$$
\begin{align*}
& \varphi_{1}=\frac{\left|\boldsymbol{M}_{1}\right|}{C}=\frac{1}{20}=0.05 \mathrm{rad} \tag{55-1}\\
& \varphi_{2}=\frac{\left|\boldsymbol{M}_{2}\right|}{C}=\frac{1}{20}=0.05 \mathrm{rad} \tag{55-2}
\end{align*}
$$

This in turn yields the maximal radial deflection $u_{r, \max }$.

$$
\begin{align*}
& u_{r, \max }\left(\boldsymbol{M}_{1}\right) \approx 1 \varphi_{1} \approx 50.00 \mathrm{~mm} \\
& u_{r, \max }\left(\boldsymbol{M}_{2}\right) \approx 1 \varphi_{2} \approx 50.00 \mathrm{~mm}
\end{align*}
$$

Please note that we have used 1st order theory approximation.

RFEM 5 Settings

- Modeled in RFEM 5.04.0024
- The element size is $I_{\mathrm{FE}}=0.50 \mathrm{~m}$
- Geometrically linear analysis is considered

Verification Example: 0055 - Scaffolding Nodal Support

- The number of increments 5
- Support Conditions: Diagram - FZ ${ }^{\prime} /$ PhiX $^{\prime}$ PhiY ${ }^{\prime}$ is given by Figure 2

Results

Structure File	Material Model	Description
0055.01	Rigid	Default Z-axis
0055.02	Rigid	Inverted Z-axis
0055.03	Isotropic Linear Elastic	RO244.5x25 cross-section

Modeled using rigid beams

Load Case	Analytical solution*	RFEM 5	
	$u_{r, \max }$ $[\mathrm{~mm}]$	$u_{r, \max }$ $[\mathrm{~mm}]$	Ratio $[-]$
Moment \boldsymbol{M}_{1}	50.00	50.00	1.000
Moment \boldsymbol{M}_{2}	50.00	50.00	1.000

Modeled using rigid beams and inverted Z-axis

Load Case	Analytical solution*	RFEM 5	
	$u_{r, \max }$ $[\mathrm{~mm}]$	$u_{r, \max }$ $[\mathrm{~mm}]$	Ratio $[-]$
Moment \boldsymbol{M}_{1}	50.00	50.00	1.000
Moment \boldsymbol{M}_{2}	50.00	50.00	1.000

Modeled using beams with RO244.5x25 cross-section

Load Case	Analytical solution*	RFEM 5	
	$u_{r, \max }$ $[\mathrm{~mm}]$	$u_{r, \max }$ $[\mathrm{~mm}]$	Ratio $[-]$
Moment \boldsymbol{M}_{1}	50.00	50.02	1.000
Moment \boldsymbol{M}_{2}	50.00	50.02	1.000

* Analytical solution was derived using rigid beams and 1st order theory in all cases

References

[1] ČSN EN 12811-1, Dočasné stavební konstrukce - Část 1: Pracovní lešení - Požadavky na provedení a obecný návrh. 2004.

