Program: RFEM 5, RFEM 6

Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Plate

Verification Example: 0065 - Two-Layered Thick-Walled Vessel

0065 - Two-Layered Thick-Walled Vessel

Description

A two-layered thick-walled vessel is loaded by inner and outer pressure. The vessel is open, thus there is no axial stress. The problem is modeled as a quarter model, see Figure 1, and is described by the following set of parameters.

Material	Inner vessel	Modulus of Elasticity	E	1.000	MPa
		Poisson's Ratio	ν	0.250	-
	Outer vessel	Modulus of Elasticity	E	0.500	MPa
		Poisson's Ratio	ν	0.250	-
Geometry		Inner radius	r_{1}	200.000	mm
		Middle radius	$r_{\text {m }}$	250.000	mm
		Outer radius	r_{2}	300.000	mm
Load		Inner pressure	p_{1}	60.000	kPa
		Outer pressure	p_{2}	10.000	kPa

Figure 1: Problem Sketch
Determine the radial deflection of the inner and outer radii $u_{\mathrm{r}}\left(r_{1}\right), u_{\mathrm{r}}\left(r_{2}\right)$ and the pressure (radial stress) in the middle radius p_{m}. Self-weight is neglected.

Verification Example: 0065 - Two-Layered Thick-Walled Vessel

Analytical Solution

The analytical solution of the given problem is analogous to the analytical solution of Verification Example 0064 - Thick-Walled Vessel [1]. The general radial deflection of the vessel is given by

$$
\begin{equation*}
u_{\mathrm{r}}(r)=\frac{r}{E}\left[\sigma_{\mathrm{t}}(r)-\nu \sigma_{\mathrm{r}}(r)\right] \tag{65-1}
\end{equation*}
$$

which defines also the radial deflection of the middle radius of both the inner and outer vessel, namely

$$
\begin{align*}
& u_{\mathrm{r}}\left(r_{\mathrm{m}}\right)=\frac{r_{\mathrm{m}}}{E_{1}}\left[K_{1}+\frac{C_{1}}{r_{\mathrm{m}}^{2}}-\nu\left(K_{1}-\frac{C_{1}}{r_{\mathrm{m}}^{2}}\right)\right] \tag{65-2}\\
& u_{\mathrm{r}}\left(r_{\mathrm{m}}\right)=\frac{r_{\mathrm{m}}}{E_{2}}\left[K_{2}+\frac{C_{2}}{r_{\mathrm{m}}^{2}}-\nu\left(K_{2}-\frac{C_{2}}{r_{\mathrm{m}}^{2}}\right)\right] \tag{65-3}
\end{align*}
$$

Constants K_{1}, C_{1}, K_{2} and C_{2} are calculated subsequently for each vessel from the corresponding radii and boundary pressures, for more details see [1]. Using these equations, the pressure in the interface p_{m} can be determined.

$$
\begin{aligned}
p_{\mathrm{m}} & =\frac{2\left(E_{1} p_{2} r_{2}^{2}\left(r_{1}^{2}-r_{\mathrm{m}}^{2}\right)+E_{2} p_{1} r_{1}^{2}\left(r_{\mathrm{m}}^{2}-r_{2}^{2}\right)\right)}{E_{2}\left(r_{2}^{2}-r_{\mathrm{m}}^{2}\right)\left[(1+\nu) r_{1}^{2}+(1-\nu) r_{\mathrm{m}}^{2}\right]+E_{1}\left(r_{\mathrm{m}}^{2}-r_{1}^{2}\right)\left[(1+\nu) r_{2}^{2}+(1-\nu) r_{\mathrm{m}}^{2}\right]} \quad(65-4) \\
& =21.655 \mathrm{kPa}
\end{aligned}
$$

In turn, the radial displacements $u_{r}\left(r_{1}\right), u_{r}\left(r_{2}\right)$ can be calculated with the help of (65-4),

$$
\begin{align*}
& u_{\mathrm{r}}\left(r_{1}\right)=\frac{r_{1}}{E_{1}}\left[K_{1}+\frac{C_{1}}{r_{1}^{2}}-\nu\left(K_{1}-\frac{C_{1}}{r_{1}^{2}}\right)\right]=33.605 \mathrm{~mm} \tag{65-5}\\
& u_{\mathrm{r}}\left(r_{2}\right)=\frac{r_{2}}{E_{2}}\left[K_{2}+\frac{C_{2}}{r_{2}^{2}}-\nu\left(K_{2}-\frac{C_{2}}{r_{2}^{2}}\right)\right]=27.287 \mathrm{~mm} \tag{65-6}
\end{align*}
$$

see Figure 2 for the former one.

RFEM Settings

- Modeled in RFEM 5.06 and RFEM 6.01
- The element size is $I_{\mathrm{FE}}=0.002 \mathrm{~m}$
- Isotropic linear elastic material model is used

Results

Structure Files	Program
0065.01	RFEM 5, RFEM 6

Verification Example: 0065 - Two-Layered Thick-Walled Vessel

Figure 2: Results in RFEM - deflection $u_{r}\left(r_{1}\right)$

Quantity	Analytical Solution	RFEM 5	Ratio	RFEM 6	Ratio
$p_{\mathrm{m}}[\mathrm{kPa}]$	21.655	21.648	1.000	21.663	1.000
$u_{r}\left(r_{1}\right)[\mathrm{mm}]$	33.605	33.605	1.000	33.602	1.000
$u_{r}\left(r_{2}\right)[\mathrm{mm}]$	27.287	27.287	1.000	27.283	1.000

References

[1] DLUBAL SOFTWARE GMBH, Verification Example 0064 - Thick-Walled Vessel. 2016.

