Verification Example

Program: RFEM 5, RFEM 6

Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Plate

Verification Example: 0065 – Two–Layered Thick–Walled Vessel

0065 - Two-Layered Thick-Walled Vessel

Description

A two-layered thick-walled vessel is loaded by inner and outer pressure. The vessel is open, thus there is no axial stress. The problem is modeled as a quarter model, see **Figure 1**, and is described by the following set of parameters.

Material	Inner vessel	Modulus of Elasticity	E	1.000	MPa
		Poisson's Ratio	ν	0.250	-
	Outer vessel	Modulus of Elasticity	Ε	0.500	MPa
		Poisson's Ratio	ν	0.250	-
Geometry		Inner radius	r ₁	200.000	mm
		Middle radius	r _m	250.000	mm
		Outer radius	r ₂	300.000	mm
Load		Inner pressure	<i>p</i> ₁	60.000	kPa
		Outer pressure	<i>p</i> ₂	10.000	kPa

Determine the radial deflection of the inner and outer radii $u_r(r_1)$, $u_r(r_2)$ and the pressure (radial stress) in the middle radius p_m . Self-weight is neglected.

Analytical Solution

The analytical solution of the given problem is analogous to the analytical solution of Verification Example 0064 – Thick–Walled Vessel [1]. The general radial deflection of the vessel is given by

$$u_{\rm r}(r) = \frac{r}{E} \left[\sigma_{\rm t}(r) - \nu \sigma_{\rm r}(r) \right] \tag{65-1}$$

which defines also the radial deflection of the middle radius of both the inner and outer vessel, namely

$$u_{\rm r}(r_{\rm m}) = \frac{r_{\rm m}}{E_{\rm 1}} \left[K_{\rm 1} + \frac{C_{\rm 1}}{r_{\rm m}^2} - \nu \left(K_{\rm 1} - \frac{C_{\rm 1}}{r_{\rm m}^2} \right) \right]$$
(65 - 2)

$$u_{\rm r}(r_{\rm m}) = \frac{r_{\rm m}}{E_2} \left[K_2 + \frac{C_2}{r_{\rm m}^2} - \nu \left(K_2 - \frac{C_2}{r_{\rm m}^2} \right) \right]$$
(65 - 3)

Constants K_1 , C_1 , K_2 and C_2 are calculated subsequently for each vessel from the corresponding radii and boundary pressures, for more details see [1]. Using these equations, the pressure in the interface p_m can be determined.

$$p_{\rm m} = \frac{2(E_1 p_2 r_2^2 (r_1^2 - r_{\rm m}^2) + E_2 p_1 r_1^2 (r_{\rm m}^2 - r_2^2))}{E_2 (r_2^2 - r_{\rm m}^2) \left[(1 + \nu) r_1^2 + (1 - \nu) r_{\rm m}^2 \right] + E_1 (r_{\rm m}^2 - r_1^2) \left[(1 + \nu) r_2^2 + (1 - \nu) r_{\rm m}^2 \right]}$$
(65 - 4)
= 21.655 kPa

In turn, the radial displacements $u_r(r_1)$, $u_r(r_2)$ can be calculated with the help of (65 – 4),

$$u_{\rm r}(r_1) = \frac{r_1}{E_1} \left[K_1 + \frac{C_1}{r_1^2} - \nu \left(K_1 - \frac{C_1}{r_1^2} \right) \right] = 33.605 \,\,{\rm mm} \tag{65-5}$$

$$u_{\rm r}(r_2) = \frac{r_2}{E_2} \left[K_2 + \frac{C_2}{r_2^2} - \nu \left(K_2 - \frac{C_2}{r_2^2} \right) \right] = 27.287 \,\rm{mm} \tag{65-6}$$

see Figure 2 for the former one.

RFEM Settings

- Modeled in RFEM 5.06 and RFEM 6.01
- The element size is $I_{\rm FE} = 0.002$ m
- Isotropic linear elastic material model is used

Results

Structure Files	Program
0065.01	RFEM 5, RFEM 6

Verification Example: 0065 – Two–Layered Thick–Walled Vessel

Figure 2: Results in RFEM - deflection $u_r(r_1)$

Quantity	Analytical Solution	RFEM 5	Ratio	RFEM 6	Ratio
p _m [kPa]	21.655	21.648	1.000	21.663	1.000
$u_r(r_1)$ [mm]	33.605	33.605	1.000	33.602	1.000
$u_r(r_2)$ [mm]	27.287	27.287	1.000	27.283	1.000

References

[1] DLUBAL SOFTWARE GMBH, Verification Example 0064 – Thick-Walled Vessel. 2016.