Category: Large Deformation Analysis, Isotropic Linear Elasticity, Member

Verification Example: 0080 - Cable with Concentrated Forces

0080 - Cable with Concentrated Forces

Description

A cable in the initial position according to Figure 1 is loaded by two concentrated forces F. The self-weight is neglected. Determine the normal forces in the cable. The problem is described by the following set of parameters.

Material	Steel Cable	Modulus of Elasticity	E	210000.000	MPa
	Poisson's Ratio	ν	0.300	-	
Geometry	Length - First Part	a	3.000	m	
	Length - Second Part	b	4.000	m	
	Cable Sag	h	2.000	m	
	Cable Diameter	d	0.030	m	
Load	Force	F	20.000	kN	

Figure 1: Problem Sketch

Analytical Solution

The normal forces in the cable can be determined by means of the section method and the equations of equilibrium. At first, the reaction forces at the support $\mathrm{A}, R_{A z}$ in z-direction and $R_{A x}$ in x-direction, are calculated from the moment equilibrium for points D, equation ($80-1$) and B, equation (80-2) respectively,

$$
\begin{align*}
R_{A z}(2 a+b)-F(b+a)-F a=0 & \Rightarrow \quad R_{A z}=F, \tag{80-1}\\
R_{A x} h+R_{A z} a=0 & \Rightarrow \quad R_{A x}=F \frac{a}{h} . \tag{80-2}
\end{align*}
$$

Due to symmetry, the horizontal components of reaction forces have the opposite values and the vertical components have the same

Verification Example: $\mathbf{0 0 8 0}$ - Cable with Concentrated Forces

$$
\begin{align*}
R_{A x} & =-R_{D x} \tag{80-3}\\
R_{A z} & =R_{D z} .
\end{align*}
$$

The normal forces calculated on the initial configuration are equal to

$$
\begin{align*}
& N_{1}=N_{3}=\sqrt{R_{A x}^{2}+R_{A z}^{2}} \\
& N_{2}=R_{A x}
\end{align*}
$$

These normal forces cause the elongination of appropriate cable parts ${ }^{1}$

$$
\begin{align*}
& \Delta L_{1}=\frac{N_{1} L_{1}}{E A} \tag{80-6}\\
& \Delta L_{2}=\frac{N_{2} b}{E A} \tag{80-7}
\end{align*}
$$

Thus, it is neccesary to update the initial geometry by means of the calculated elonginations ΔL_{1} and ΔL_{2} and recalculate the normal forces. The updated quantities are denoted with a bar, more precisely

$$
\begin{aligned}
\bar{a} & =a-\frac{\Delta L_{2}}{2}, \\
\overline{L_{1}} & =L_{1}+\Delta L_{1}, \\
\bar{h} & =\sqrt{\bar{L}_{1}^{2}-\bar{a}^{2}}
\end{aligned}
$$

The normal forces are further recalculated as

$$
\begin{align*}
& \bar{N}_{1}=F \sqrt{1+\frac{\bar{a}^{2}}{\bar{h}^{2}}} \approx 36.025 \mathrm{kN}, \tag{80-11}\\
& \bar{N}_{2}=F \overline{\bar{a}^{2}} \approx 29.963 \mathrm{kN} \tag{80-12}
\end{align*}
$$

RFEM 5 and RSTAB 8 Settings

- Modeled in RFEM 5.09.01 and RFEM 8.09.01
- The finite element length is $I_{\mathrm{FE}}=0.100 \mathrm{~m}$
- The number of increments is 10
- Isotropic linear elastic model is used

[^0]Verification Example: 0080 - Cable with Concentrated Forces

Results

Structure Files	Program	Entity
0080.01	RFEM 5	Member - Cable
0080.02	RSTAB 8	Member - Cable

Figure 2: RFEM 5 / RSTAB 8 Results - normal force $N[k N]$

Quantity	Analytical solution	RFEM 5	Ratio $[-]$	RSTAB 8	Ratio $[-]$
$\bar{N}_{1}[\mathrm{kN}]$	36.025	36.025	1.000	36.025	1.000
$\bar{N}_{2}[\mathrm{kN}]$	29.963	29.963	1.000	29.963	1.000

[^0]: ${ }^{1}$ The length of the first part of the cable is defined as $L_{1}=\sqrt{a^{2}+h^{2}}$ and the cross-section area of the cable is $A=\frac{\pi d^{2}}{4}$.

