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0096 – Euler Buckling

Description

A strut with circular cross-section is supported according to four basic cases of Euler buckling
and it is subjected to pressure force P according to Figure 1. Determine the critical load Pcr. The
problem is described by the following parameters.

Material Steel Modulus of
Elasticity

E 210000.000 MPa

Poisson's
Ratio

𝜈 0.300 −

Geometry Strut Length L 2.000 m

Diameter d 30.000 mm

Load Force P 10.000 kN
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Figure 1: Problem Sketch

Analytical Solution

The governing differential equation for all buckling cases is, see [1],

d2

dx2
y = −

M
EI

, (96 – 1)
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where y is the coordinate in buckling direction,M is the bending moment related to the cross-sec-
tion and I is the moment of inertia1.

Buckling Case 1

The strut is fixed on one end and free on the other one. Equation (96 – 1) can then be rewritten as

d2

dx2
y = −

P
EI

(𝛿 − y), (96 – 2)

where 𝛿 is the maximum lateral deflection of the tip of the strut. Using the substitution

𝛼 = √ P
EI

, (96 – 3)

the solution of (96 – 2) reads as

y = C1 cos(𝛼x) + C2 sin(𝛼x) + 𝛿, (96 – 4)

Integration constants C1 and C2, can be obtained from the following boundary conditions

y(0) = 0, (96 – 5)

d
dx

y(0) = 0. (96 – 6)

The result deflection then reads

y = 𝛿 (1 − cos(𝛼x))). (96 – 7)

For nonzero 𝛿 and for the tip of the strut, the following condition has to be hold

cos(𝛼L) = 0 ⇒ 𝛼L = k
𝜋
2

, k = 1, 3, 5, ... (96 – 8)

The minimum value corresponds to k = 1 and the critical force Pcr is then, by substituting into (96
– 3),

Pcr =
𝜋2EI
4L2

≈ 5.151 kN. (96 – 9)

Buckling Case 2

The strut is supported by means of pinned joints, where one is, futhermore, sliding. Equation (96
– 1) reads as

1 Moment of inertia for circular cross-section is I = u�d4
64 .
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d2

dx2
y = −

P
EI
y, (96 – 10)

the solution of this differential equation is of the form

y = C1 cos(𝛼x) + C2 sin(𝛼x), (96 – 11)

Integration constants C1 and C2, can be obtained from the following boundary conditions

y(0) = 0, (96 – 12)

y(L) = 0. (96 – 13)

From boundary conditions follows

C2 sin(𝛼L) = 0. (96 – 14)

For nonzero constant C2 can be written

sin(𝛼L) = 0 ⇒ 𝛼L = k𝜋, k = 1, 2, 3, ... (96 – 15)

The minimum value corresponds to k = 1 and the critical force Pcr is then

Pcr =
𝜋2EI
L2

≈ 20.602 kN. (96 – 16)

Buckling Case 3

The strut is fixed on one end and supported by means of sliding pinned joint on the other one.
Equation (96 – 1) can be then rewritten as follows

d2

dx2
y = −

P
EI

(y −
H
P

(L − x)) , (96 – 17)

whereH is thehorizontal reaction force in thepinned joint. The solutionof this differential equation
reads as

y = C1 cos(𝛼x) + C2 sin(𝛼x) +
H
P

(L − x). (96 – 18)

Integration constants C1 and C2, can be obtained from the same boundary conditions as (96 – 5)
and (96 – 6). The result deflection is then
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y =
H
P

(
1
𝛼
sin(𝛼x) − L cos(𝛼x) + (L − x)) . (96 – 19)

This equation must also satisfy the condition for the second end of the strut (96 – 13), after
substitution

0 =
H
P

(
1
𝛼
sin(𝛼L) − L cos(𝛼L)) . (96 – 20)

For nonzero horizontal reaction force H, the following equation has to hold

tan(𝛼L) = 𝛼L. (96 – 21)

This transcendental equation can be solved numerically or grafically with approximate solution

Pcr ≈ 42.147 kN. (96 – 22)

Buckling Case 4

The strut is fixed on both ends and one end is sliding. Equation (96 – 1) takes the form

d2

dx2
y = −

P
EI

(y −
M1

P
) , (96 – 23)

whereM1 is the reaction moment in the fixed support. The solution of this differential equation
reads as

y = C1 cos(𝛼x) + C2 sin(𝛼x) +
M1

P
, (96 – 24)

Integration constants C1 and C2, can be obtained from the boundary conditions (96 – 5) and (96
– 6). The general solution then reads

y =
M1

P
(1 − cos(𝛼x)) . (96 – 25)

This equation must also satisfy the condition for the second end of the strut (96 – 13), after
substitution

0 =
M1

P
(1 − cos(𝛼L)) . (96 – 26)

For nonzero reaction momentM1, the following equation
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cos(𝛼L) = 1 ⇒ 𝛼L = 2k𝜋, k = 1, 2, 3, ... (96 – 27)

yields a minimum value for k = 1 and the critical force Pcr is

Pcr =
4𝜋2EI
L2

≈ 82.409 kN. (96 – 28)

RFEM 5 and RSTAB 8 Settings

• Modeled in RFEM 5.16.01 and RSTAB 8.16.01
• Element size is lFE = 0.1 m
• Isotropic linear elastic material is used
• Lanczos method is used for eigenvalue analysis

Results

Structure File Program Buckling Case

0096.01 RFEM 5 - RF-STABILITY Case 1

0096.02 RFEM 5 - RF-STABILITY Case 2

0096.03 RFEM 5 - RF-STABILITY Case 3

0096.04 RFEM 5 - RF-STABILITY Case 4

0096.05 RSTAB 8 - RSBUCK Case 1

0096.06 RSTAB 8 - RSBUCK Case 2

0096.07 RSTAB 8 - RSBUCK Case 3

0096.08 RSTAB 8 - RSBUCK Case 4

Buckling Case Analytical
Solution

RFEM 5 – RF-STABILITY RSTAB 8 – RSBUCK

Pcr
[kN]

Pcr
[kN]

Ratio
[-]

Pcr
[kN]

Ratio
[-]

Case 1 5.151 5.150 1.000 5.153 1.000

Case 2 20.602 20.596 1.000 20.749 1.007

Case 3 42.147 42.107 0.999 43.190 1.025

Case 4 82.409 82.270 0.998 83.324 1.011
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Figure 2: Results in RFEM 5 / RSTAB 8 – First eigenvector.
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