Verification e

Program: RFEM 5, RSTAB 8, RF-STABILITY, RSBUCK

Category: Isotropic Linear Elasticity, Geometrically Linear Analysis, Stability, Member

Verification Example: 0096 – Euler Buckling

0096 – Euler Buckling

Description

A strut with circular cross-section is supported according to four basic cases of Euler buckling and it is subjected to pressure force P according to **Figure 1**. Determine the critical load P_{cr} . The problem is described by the following parameters.

Material	Steel	Modulus of Elasticity	Ε	210000.000	MPa
		Poisson's Ratio	ν	0.300	-
Geometry	Strut	Length	L	2.000	m
		Diameter	d	30.000	mm
Load		Force	Р	10.000	kN

Figure 1: Problem Sketch

Analytical Solution

The governing differential equation for all buckling cases is, see [1],

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y = -\frac{M}{EI},\tag{96-1}$$

where y is the coordinate in buckling direction, M is the bending moment related to the cross-section and I is the moment of inertia¹.

Buckling Case 1

The strut is fixed on one end and free on the other one. Equation (96 - 1) can then be rewritten as

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y = -\frac{P}{EI}(\delta - y), \tag{96-2}$$

where δ is the maximum lateral deflection of the tip of the strut. Using the substitution

$$\alpha = \sqrt{\frac{P}{EI}},\tag{96-3}$$

the solution of (96 - 2) reads as

$$y = C_1 \cos(\alpha x) + C_2 \sin(\alpha x) + \delta, \qquad (96-4)$$

Integration constants C_1 and C_2 , can be obtained from the following boundary conditions

$$y(0) = 0,$$
 (96 - 5)

$$\frac{d}{dx}y(0) = 0. (96 - 6)$$

The result deflection then reads

$$\mathbf{y} = \delta \left(1 - \cos(\alpha \mathbf{x}) \right). \tag{96-7}$$

For nonzero δ and for the tip of the strut, the following condition has to be hold

.

$$\cos(\alpha L) = 0 \quad \Rightarrow \quad \alpha L = k\frac{\pi}{2}, \quad k = 1, 3, 5, \dots$$
 (96 - 8)

The minimum value corresponds to k = 1 and the critical force P_{cr} is then, by substituting into (96 – 3),

$$P_{cr} = \frac{\pi^2 E I}{4L^2} \approx 5.151 \text{ kN.}$$
 (96 - 9)

Buckling Case 2

The strut is supported by means of pinned joints, where one is, futhermore, sliding. Equation (96 – 1) reads as

¹ Moment of inertia for circular cross-section is $I = \frac{\pi d^4}{64}$.

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y = -\frac{P}{EI}y,\tag{96-10}$$

the solution of this differential equation is of the form

$$y = C_1 \cos(\alpha x) + C_2 \sin(\alpha x), \qquad (96 - 11)$$

Integration constants C_1 and C_2 , can be obtained from the following boundary conditions

$$y(0) = 0,$$
 (96 - 12)

$$y(L) = 0.$$
 (96 – 13)

From boundary conditions follows

$$C_2 \sin(\alpha L) = 0. \tag{96-14}$$

For nonzero constant C_2 can be written

$$sin(\alpha L) = 0 \quad \Rightarrow \quad \alpha L = k\pi, \quad k = 1, 2, 3, \dots$$
 (96 - 15)

The minimum value corresponds to k = 1 and the critical force P_{cr} is then

$$P_{cr} = \frac{\pi^2 E I}{L^2} \approx 20.602 \text{ kN}.$$
 (96 – 16)

Buckling Case 3

The strut is fixed on one end and supported by means of sliding pinned joint on the other one. Equation (96 – 1) can be then rewritten as follows

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y = -\frac{P}{EI}\left(y - \frac{H}{P}(L-x)\right), \qquad (96-17)$$

where *H* is the horizontal reaction force in the pinned joint. The solution of this differential equation reads as

$$y = C_1 \cos(\alpha x) + C_2 \sin(\alpha x) + \frac{H}{P}(L - x).$$
 (96 - 18)

Integration constants C_1 and C_2 , can be obtained from the same boundary conditions as (96 – 5) and (96 – 6). The result deflection is then

$$y = \frac{H}{P} \left(\frac{1}{\alpha} \sin(\alpha x) - L \cos(\alpha x) + (L - x) \right).$$
 (96 - 19)

This equation must also satisfy the condition for the second end of the strut (96 – 13), after substitution

$$0 = \frac{H}{P} \left(\frac{1}{\alpha} \sin(\alpha L) - L \cos(\alpha L) \right).$$
 (96 - 20)

For nonzero horizontal reaction force H, the following equation has to hold

$$\tan(\alpha L) = \alpha L. \tag{96-21}$$

This transcendental equation can be solved numerically or grafically with approximate solution

$$P_{cr} \approx 42.147 \text{ kN.}$$
 (96 – 22)

Buckling Case 4

The strut is fixed on both ends and one end is sliding. Equation (96 - 1) takes the form

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}y = -\frac{P}{EI}\left(y - \frac{M_1}{P}\right),\tag{96-23}$$

where M_1 is the reaction moment in the fixed support. The solution of this differential equation reads as

$$y = C_1 \cos(\alpha x) + C_2 \sin(\alpha x) + \frac{M_1}{P},$$
 (96 - 24)

Integration constants C_1 and C_2 , can be obtained from the boundary conditions (96 – 5) and (96 – 6). The general solution then reads

$$y = \frac{M_1}{P} (1 - \cos(\alpha x)).$$
 (96 - 25)

This equation must also satisfy the condition for the second end of the strut (96 – 13), after substitution

$$D = \frac{M_1}{P} (1 - \cos(\alpha L)).$$
 (96 - 26)

For nonzero reaction moment M_1 , the following equation

(

$$\cos(\alpha L) = 1 \quad \Rightarrow \quad \alpha L = 2k\pi, \quad k = 1, 2, 3, \dots$$
 (96 - 27)

yields a minimum value for k = 1 and the critical force P_{cr} is

$$P_{cr} = \frac{4\pi^2 E I}{L^2} \approx 82.409 \text{ kN}.$$
 (96 - 28)

RFEM 5 and RSTAB 8 Settings

- Modeled in RFEM 5.16.01 and RSTAB 8.16.01
- Element size is $I_{FE} = 0.1 \text{ m}$
- Isotropic linear elastic material is used
- Lanczos method is used for eigenvalue analysis

Results

Structure File	Program	Buckling Case	
0096.01	RFEM 5 - RF-STABILITY	Case 1	
0096.02	RFEM 5 - RF-STABILITY	Case 2	
0096.03	RFEM 5 - RF-STABILITY	Case 3	
0096.04	RFEM 5 - RF-STABILITY	Case 4	
0096.05	RSTAB 8 - RSBUCK	Case 1	
0096.06	RSTAB 8 - RSBUCK	Case 2	
0096.07	RSTAB 8 - RSBUCK	Case 3	
0096.08	RSTAB 8 - RSBUCK	Case 4	

Buckling Case	Analytical Solution	RFEM 5 – RF-STABILITY		RSTAB 8 – RSBUCK	
	P _{cr} [kN]	P _{cr} [kN]	Ratio [-]	P _{cr} [kN]	Ratio [-]
Case 1	5.151	5.150	1.000	5.153	1.000
Case 2	20.602	20.596	1.000	20.749	1.007
Case 3	42.147	42.107	0.999	43.190	1.025
Case 4	82.409	82.270	0.998	83.324	1.011

Figure 2: Results in RFEM 5 / RSTAB 8 – First eigenvector.

References

[1] TIMOSHENKO, S. and GERE, J. *Theory of Elastic Stability*. McGraw-Hill Book Company, 1963.

