Program: RFEM 5, RF-DYNAM Pro

Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Dynamics, Plate, Solid

Verification Example: 0110 – Natural Vibrations of Rectangular Plate

0110 - Natural Vibrations of Rectangular Plate

Description

A rectangular steel plate of dimensions a, b and thickness h is simply supported at its edges according to **Figure 1**. Determine the natural frequencies of the rectangular plate. The problem is described by the following parameters.

Material	Steel	Modulus of Elasticity	E	210000.0	MPa
		Poisson's Ratio	ν	0.300	_
		Density	ρ	7850.000	kgm⁻³
Geometry		Width	а	1.000	m
		Length	b	1.500	m
		Thickness	h	0.010	m

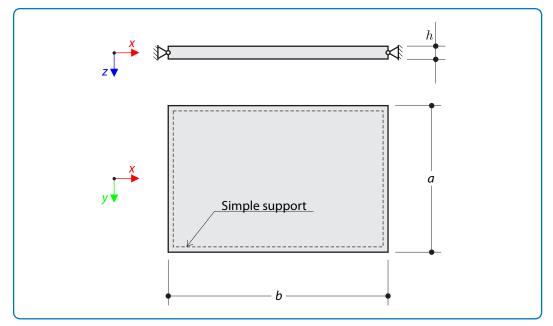


Figure 1: Problem Sketch

Analytical Solution

Free vibrations of a rectangular plate are described by the following differential equation for the *z*-directional deflection of the plate $u_z(x, y, t)$

$$\frac{\partial^4 u_z}{\partial x^4} + 2\frac{\partial^4 u_z}{\partial x^2 \partial y^2} + \frac{\partial^4 u_z}{\partial y^4} + \frac{1}{c^2}\frac{\partial^2 u_z}{\partial t^2} = 0$$
(110-1)

Verification Example: 0110 – Natural Vibrations of Rectangular Plate

The speed of the wave propagation c is given by the density of the plate material ρ , plate thickness h and the plate modulus D

$$c = \sqrt{\frac{D}{\rho h}}, \qquad D = \frac{Eh^3}{12(1-\nu^2)}$$
 (110-2)

The solution is sought for using separation of variables

$$u_z(x, y, t) = X(x)Y(y)T(t)$$
 (110-3)

Substitution into (110 – 1) yields¹

$$-\frac{\ddot{T}}{T} = c^2 \left(\frac{X^{(4)}}{X} + 2\frac{X''Y''}{XY} + \frac{Y^{(4)}}{Y}\right) = \Omega^2$$
(110-4)

The left-hand side depends on time *t*, while the right-hand side only on the spatial coordinates *x* and *y*. Thus both sides have to be equal to a constant Ω^2 .

The first part of (110 – 4)

$$\ddot{T} + \Omega^2 T = 0 \tag{110-5}$$

admits a soltuion in the following form

$$T(t) = A\sin(\Omega t) + B\cos(\Omega t)$$
(110-6)

where the constants A, B depend on the initial conditions.

The second part of (110 - 4) can be rewritten into the biharmonic equation

$$\frac{X^{(4)}}{X} + 2\frac{X''Y''}{XY} + \frac{Y^{(4)}}{Y} = \frac{\Omega^2}{c^2}$$
(110-7)

According to [1], for a simply supported rectangular plate, solutions satisfying the boundary conditions take the following form

$$X_m(x) = \sin\left(\frac{m\pi x}{a}\right), \qquad m = 1, 2, 3, ...$$
 (110 - 8)

$$Y_n(y) = \sin\left(\frac{n\pi y}{b}\right), \qquad n = 1, 2, 3, ...$$
 (110-9)

Substituting these functions into (110 – 7), the constants $\varOmega_{\rm mn}$ are determined

¹ The dashed notation indicates the derivative with respect to appropriate coordinate, e.g. $X'' = \frac{d^2 X(x)}{dx^2}$. The dotted notation indicates the derivative with respect to time *t*.

$$\Omega_{mn} = c\pi^2 \left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right)$$
(110 - 10)

Considering that $\Omega_{mn} = 2\pi f_{mn}$, the natural frequencies of the rectangular plate can be calculated according to the following equation

$$f_{mn} = \frac{\pi}{2} \sqrt{\frac{D}{\rho h}} \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)$$
(110 - 11)

The first six natural frequencies, for mn = 11, 12, 21, 13, 22, 23, are shown in the result table.

RFEM 5 Settings

- Modeled in RFEM 5.07.05
- The element size is $I_{FE} = 0.010$ m for the entity Plate
- The element size is $I_{FE} = 0.050$ m for the entity Solid
- Layered mesh is used for the entity Solid with 4 layers
- Isotropic linear elastic material model is used

Results

Structure Files	Program	Entity	
0110.01	RF-DYNAM Pro	Plate	
0110.02	RF-DYNAM Pro	Solid	

Frequency	Analytical Solution	Plate		Solid	
		RF-DYNAM Pro	Ratio	RF-DYNAM Pro	Ratio
<i>f</i> ₁ [Hz]	34.344	35.513	1.034	35.481	1.033
<i>f</i> ₂ [Hz]	66.046	68.293	1.034	68.238	1.033
<i>f</i> ₃ [Hz]	105.673	109.268	1.034	109.666	1.038
<i>f</i> ₄ [Hz]	118.882	122.927	1.034	123.172	1.036
<i>f</i> ₅ [Hz]	137.375	142.049	1.034	142.131	1.035
<i>f</i> ₆ [Hz]	190.212	196.684	1.034	196.672	1.034

Following Figure 2 shows the first six natural shapes of the investigated plate.

Verification Example: 0110 – Natural Vibrations of Rectangular Plate

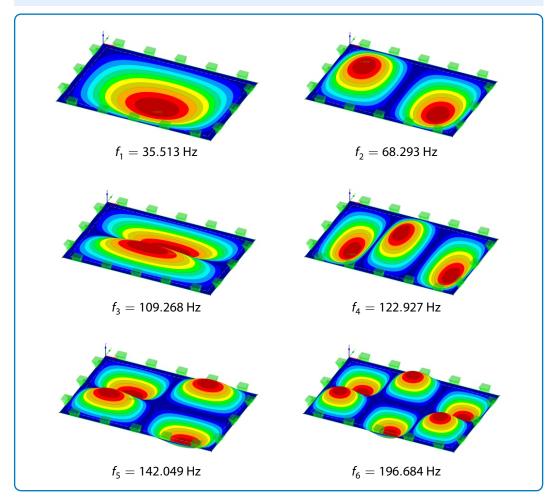


Figure 2: First six natural shapes of the plate in RFEM 5

References

[1] LEISSA, A. W. Vibration of Plates. NASA, Washington, D.C..

