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0300 – Drag Force on a Sphere

Description

A sphere is subjected to uniform flow of viscous fluid according to Figure 1. The velocity u of the
fluid is considered at infinity. The goal is to determine the drag force Fx. The parameters of the
problem are set so that the Reynolds number is small and the radius of the sphere is also small,
thus the theoretical solution can be reached – Stokes flow (G. G. Stokes 1851). The problem is
described by the following set of parameters.

Fluid Properties Dynamic
Viscosity

𝜇
0.00012 Pas

Density 𝜌 1.200 kg/m3

Geometry Sphere Radius R 0.0005 m

Load Fluid Velocity u 0.001 m/s

u

R

𝜃
r

Figure 1: Problem sketch

Analytical Solution

Analytical solution is based on the theory introduced in [1]. Motion of incompressible fluids is
described by the Navier-Stokes equation

∂v
∂t

+ (v ⋅ ∇)v = −
1
𝜌

∇ p +
𝜂
𝜌

△ v, (300 – 1)

where v is the flow velocity vector field, p is the pressure and 𝜌 is the density. The incompressibility
condition follows

div v = 0. (300 – 2)

Finally, to completely determine the motion of the fluid, zero-velocity boundary condition is
considered at the surface of the sphere, namely, in polar coordnates,
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v(R) = 0. (300 – 3)

The Stokes flow assumes small values of Reynolds number (Re ≪ 1). In this case, it is

Re =
vL
𝜈

=
𝜌uR
𝜂

= 0.005, (300 – 4)

where L is the characteristic dimension and 𝜈 is the kinematic viscosity

𝜈 =
𝜂
𝜌

= 0.0001 m2/s. (300 – 5)

Velocity Vector Field

Assuming an incompressible fluid, steady flow (negligible inertial forces) and small Reynolds
number, (300 – 1) can be simplified into the form

𝜂 △ v − ∇ p = 0. (300 – 6)

Considering the velocity vector of the fluid u at infinity, it could be substituted into the equation
of continuity (300 – 2)

div (v − u) = div v = 0, (300 – 7)

v − u can be expressed using vector potential A, i.e. rot A = 0 at infinity

v − u = rot A, (300 – 8)

this step can be justified by the Poincaré Lemma, [2]. The parity properties of vectors are used
further. The velocity v is the real vector and the right-hand side of equation (300 – 8) has to be
also the real vector. Therefore, A has to be a pseudovector. In the flow past a sphere (symmetrical
body), the preferred direction is the direction of u. The parameter u has to appear linearly inA due
to the linear motion equations and boundary conditions. The general form of the vector function
satisfying these requirements is

A = f′(r)n × u, (300 – 9)

where n is a unit vector parallel to the position vector r and f′(r) is a scalar function of r. The
product f′(r)n can be expressed as the gradient of another function f(r). Considering that u is
constant, the velocity vector can be then written as

v = u + rot(∇f × u)

= u + rot rot(fu). (300 – 10)
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To determine the function f, the rot of (300 – 6) is used

△rot v = 0. (300 – 11)

The rot of the velocity field v is calculated at first

rot v = rot rot rot(fu)

= (∇div − △)rot (fu))

= − △ rot(fu), (300 – 12)

and then substituted into (300 – 11) it takes the form

△2 rot(fu) = △2(∇ × u)

= (△2∇f) × u = 0. (300 – 13)

From this it follows that

△2∇ f = 0. (300 – 14)

A first integration of (300 – 14) gives

△2f = constant = 0. (300 – 15)

The difference v − u has to be zero at infinity, so the integration constant has to be equal to zero.
Function f is the function of only one variable r, thus (300 – 15) can be written in the form

△2f ≡
1
r2

d
dr

(r2
d
dr

) △ f = 0. (300 – 16)

Solving this equation △f is equal to

△f =
2A
r

+ C, (300 – 17)

where A and C are real constants. The constant C has to be zero due to the condition v − u = 0 at
infinity. Further solution gives

f = Ar +
B
r
, (300 – 18)
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where B is a real constant. The additive constant is omitted because the velocity is given by the
derivatives of f. After substitution of f into (300 – 10),

v = u − A
u + n(u ⋅ n)

r
+ B

3n(u ⋅ n) − u
r3

. (300 – 19)

The constants A and B have to be determined from the boundary condition (300 – 3). Hence

−u(
A
R

+
B
R3

− 1) + n(u ⋅ n) (−
A
R

+
3B
R3

) = 0. (300 – 20)

The equation has to hold for all n, thus

A =
3
4
R, (300 – 21)

B =
1
4
R3. (300 – 22)

The final form of scalar function f and the velocity vector is obtained

f =
3Rr
4

+
1R3

4r
, (300 – 23)

v = −
3
4
R
u + n(u ⋅ n)

r
+

1
4
R3 3n(u ⋅ n) − u

r3
+ u. (300 – 24)

The velocity vector components are determined in spherical polar coordinateswith the axis parallel
to u

vr = u cos 𝜃 (1 −
3R
2r

+
R3

2r3
) , (300 – 25)

vu� = −u cos 𝜃 (1 −
3R
4r

+
R3

4r3
) . (300 – 26)

This defines the velocity distribution around the sphere.

Pressure

To determine the pressure, (300 – 10) is substituted into (300 – 6)

∇p = 𝜂 △ v

= 𝜂 △ rot rot(fu)

= 𝜂 △ (∇div(fu)u △ f). (300 – 27)

According to (300 – 15), △2f = 0 so it can be written that
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∇p = ∇ [𝜂 △ div(fu)]

= ∇(𝜂u ⋅ ∇ △ f). (300 – 28)

Hence,

p = 𝜂u ⋅ ∇ △ f + p0, (300 – 29)

where p0 is the fluid pressure at infinity (in this case p0 = 0). Substituting (300 – 23) for f, the final
formula for pressure is obtained

p = p0 −
3
2

𝜂
u ⋅ n
r2

R. (300 – 30)

Drag Force

Now it is possible to determine the drag force on the sphere. The stress tensor 𝜎 can be divided
into the hydrostatic and deviatoric part

𝜎 = −pI + 𝜂 (∇v + ∇vT) . (300 – 31)

The force F per unit area with outer normal n is defined as

F = −𝜎n. (300 – 32)

The spherical polar coordinates with the axis parallel to u are considered and all quantities are
functions only of r and of the polar angle 𝜃 . The drag force in the flow direction can be determined
by means of integration appropriate forces per square area over the surface of the sphere

Fx = ∫
u�

(−p cos 𝜃 + 𝜎rr cos 𝜃 − 𝜎ru� sin 𝜃)dA, (300 – 33)

where the first term in the integral corresponds to the hydrostatic pressure, the second to the
normal stress caused by the viscosity and third to the shear stress due to the viscosity. Appropriate
stress components in spherical coordinates are following

𝜎rr = 2𝜂
∂vr
∂r

, (300 – 34)

𝜎ru� = 𝜂 (
1
r

∂vr
∂𝜃

+
∂vu�
∂𝜃

−
vu�
r

) . (300 – 35)

Substituting expressions (300 – 25) and (300 – 26) it results
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𝜎rr = 0, (300 – 36)

𝜎ru� = −
3𝜂
2R

u sin 𝜃. (300 – 37)

The pressure p is defined by (300 – 30) and it can be expressed as

p = p0 −
3𝜂
2R

u cos 𝜃. (300 – 38)

Hence the integral (300 – 33) reduces to

Fx = 3𝜋𝜇Ru
u�

∫
0

cos2 𝜃 sin 𝜃d𝜃 + 3𝜋𝜇Ru
u�

∫
0

sin3 𝜃d𝜃 = 2𝜋𝜇Ru⏟
pressure

+ 4𝜋𝜇Ru⏟
viscosity

. (300 – 39)

The total drag force of the sphere in the slow fluid flow (Stokes formula) follows

Fx = 2𝜋𝜇Ru + 4𝜋𝜇Ru = 6𝜋𝜇Ru. (300 – 40)

In RWIND Simulation, viscous forces are neglected. Thus, the drag force is here calculated sepa-
rately for pressure Fx,p and viscous part Fx,v according to (300 – 40), and only the pressure part is
further compared to the RWIND Simulation solution.

Fx,p = 2𝜋𝜇Ru ≈ 3.770 ⋅ 10−10N (300 – 41)

Fx,v = 4𝜋𝜇Ru ≈ 7.540 ⋅ 10−10N (300 – 42)

Fx = 6𝜋𝜇Ru ≈ 1.131 ⋅ 10−9N (300 – 43)

RWIND Simulation Settings

• Modeled in RWIND Simulation 1.21
• Turbulence is not considered

Results

Structure Files Program

0300.01 RWIND Simulation
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Figure 2: Results in RWIND Simulation - Streamlines

Analytical Solution RWIND Simulation

Fx,p
[N]

Fx,p
[N]

Ratio
[-]

3.770 ⋅ 10−10 3.637 ⋅ 10−10 0.965
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