Program: RFEM 5, RFEM 6

Category: Geometrically Linear Analysis, Isotropic Plasticity, Isotropic Nonlinear Elasticity, Member, Plate

Verification Example: 0020 – Plastic Bending with Different Plastic Strengths

0020 – Plastic Bending with Different Plastic Strengths

Description

A cantilever is fully fixed on the left end (x = 0) and subjected to a bending moment M on the right end according to the **Figure 1**. The material has different plastic strengths in tension and compression. The problem is described by the following set of parameters.

Material	Elastic-Plastic	Modulus of Elasticity	E	210000.000	MPa
		Poisson's Ratio	ν	0.000	-
		Shear Modulus	G	105000.000	MPa
		Tensile Plastic Strength	f _t	200.000	MPa
		Compressive Plastic Strength	f _c	280.000	MPa
Geometry	Cantilever	Length	L	2.000	m
		Width	W	0.005	m
		Thickness	t	0.005	m
Load Bending Moment		М	6.000	Nm	

Small deformations are considered and the self-weight is neglected in this example. Determine the maximum deflection $u_{z,max}$.

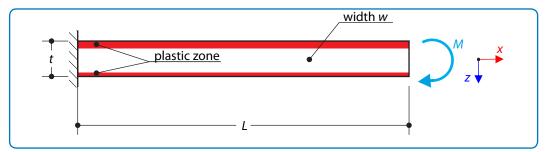


Figure 1: Problem sketch

Analytical Solution

Linear Analysis

Considering linear analysis (only elasticity) the maximum deflection of the structure can be calculated as follows:

Verification Example: 0020 – Plastic Bending with Different Plastic Strengths

$$u_{z,\max} = \frac{ML^2}{2El_v} = 1.097 \,\mathrm{m}$$
 (20 – 1)

Nonlinear Analysis

The cantilever is loaded by the bending moment *M*. Due to the different plastic strength in the tension and compression the neutral axis is not necessary coincident with the axis of the symmetry according to the **Figure 2**. The parameter z_0 is introduced and it is defined so that $\sigma_x(x, z_0) = 0$, note that it changes during loading as well as parameters z_t and z_c . The bending stress is defined by the following formula

$$\sigma_{\mathbf{x}} = -\kappa E(\mathbf{z} - \mathbf{z}_0(\mathbf{x})) \tag{20-2}$$

where $\kappa(x)$ is the curvature defined as $\kappa(x) = d^2 u_z / dx^2$ [1].

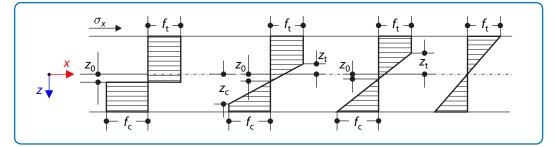


Figure 2: Bending stress distribution

The quantities of the bending moment M are discussed at first. The moment $M_{\rm et}$ when the first yield occurs in the tensile part, the moment $M_{\rm ec}$ when the first yield occurs in the compressed part and the ultimate moment $M_{\rm p}$ when the structure becomes plastic hinge are calculated as follows, assuming $f_{\rm t} < f_{\rm c}$

$$M_{\rm et} = 2 \int_{-t/2}^{0} \sigma(z) z w \, dz = 2 \int_{-t/2}^{0} -\frac{2f_{\rm t}}{t} z^2 w \, dz = -\frac{f_{\rm t} w t^2}{6} = -4.1\bar{6} \, \rm Nm \tag{20-3}$$

$$M_{\rm ec} = \int_{-t/2}^{-z_{\rm t}} f_{\rm t} z w \, \mathrm{d}z + \int_{-z_{\rm t}}^{t/2} -\kappa E(z - z_0) z w \, \mathrm{d}z = -5.614 \, \rm Nm \tag{20-4}$$

$$M_{\rm p} = \int_{-t/2}^{z_0} f_{\rm t} z w \, \mathrm{d}z + \int_{z_0}^{t/2} -f_{\rm c} z w \, \mathrm{d}z = -7.292 \, \rm Nm \tag{20-5}$$

where the parameters z_t and z_0 are obtained for each stress state from the equality of the curvature κ and from the equilibrium of the axial forces N in the cross-section (20 – 6).

$$N = \int_{A} \sigma(z) \, \mathrm{d}A = 0 \tag{20-6}$$

Verification Example: 0020 – Plastic Bending with Different Plastic Strengths

It is obvious that for the given loading moment M the cantilever is in the elastic-plastic state and both top and bottom edge are in the plastic state. To obtain the maximum deflection $u_{z,max}$ the curvature κ has to be solved. The elastic-plastic moment M_{ep} (internal force) has to equal to the bending moment M (external force)

$$M_{\rm ep} = \int_{-t/2}^{-z_{\rm t}} f_{\rm t} z w \, dz + \int_{-z_{\rm t}}^{z_{\rm c}} -\kappa E(z-z_0) z w \, dz + \int_{z_{\rm c}}^{t/2} -f_{\rm c} z w \, dz = M$$
(20-7)

because of the unknown parameters z_t , z_c and z_0 it is necessary to write further equations. The stresses in the interface between the elastic and plastic zones are defined as follows.

$$f_{\rm t} = -\kappa E(-z_{\rm t} - z_{\rm 0}) \tag{20-8}$$

$$-f_{\rm c} = -\kappa E(z_{\rm c} - z_{\rm 0}) \tag{20-9}$$

The last condition is defined by the equilibrium of the axial forces.

$$N = \int_{-t/2}^{-z_{\rm t}} f_{\rm t} w \, \mathrm{d}z + \int_{-z_{\rm t}}^{z_{\rm c}} -\kappa E(z - z_0) w \, \mathrm{d}z + \int_{z_{\rm c}}^{t/2} -f_{\rm c} w \, \mathrm{d}z = 0 \tag{20-10}$$

Solving equations (20 – 7), (20 – 8), (20 – 9) and (20 – 10) numerically, the curvature κ results in

$$\kappa = 0.636 \,\mathrm{m}^{-1} \tag{20-11}$$

The maximum deflection $u_{z,max}$ can be then calculated as

$$u_{z,\max} = \int_{0}^{L} \kappa(L-x) \, dx = 1.272 \, m$$
 (20 - 12)

RFEM Settings

- Modeled in RFEM 5.26 and RFEM 6.01
- The element size is $I_{FE} = 0.020 \text{ m}$
- Geometrically linear analysis is considered
- The number of increments is 5
- Shear stiffness of the members is neglected

Verification Example: 0020 – Plastic Bending with Different Plastic Strengths

Results

Structure File	Entity	Material model	Hypothesis	
0020.01	Plate	Orthotropic Plastic 2D	Tsai-Wu	
0020.02	Member	lsotropic Nonlinear Elastic 1D	-	
0020.03	Plate	Nonlinear Elastic 2D/3D	Mohr-Coulomb	
0020.04	Plate	Nonlinear Elastic 2D/3D	Drucker-Prager	
0020.05	Plate	Isotropic Plastic 2D/3D	Mohr-Coulomb	
0020.06	Plate	Isotropic Plastic 2D/3D	Drucker-Prager	
0020.07	Solid	Nonlinear Elastic 2D/3D	Mohr-Coulomb	
0020.08	Solid	Nonlinear Elastic 2D/3D	Drucker-Prager	
0020.09	Solid	Isotropic Plastic 2D/3D	Mohr-Coulomb	
0020.10	Solid	Isotropic Plastic 2D/3D	Drucker-Prager	

Varification Example:	0020 – Plastic Bending with Different Plastic Strengths
vernication Example.	0020 - Flastic Benuing with Different Flastic Strengths

Model	Analytical Solution	RFE	M 5	RFEM 6	
	u _{z,max} [m]	u _{z,max} [m]	Ratio [-]	u _{z,max} [m]	Ratio [-]
Orthotropic Plastic 2D	1.272	1.277	1.004	1.277	1.004
lsotropic Nonlinear Elastic 1D		1.272	1.000	1.272	1.000
Nonlin- ear Elastic 2D/3D,Mohr - Coulomb, Plate		1.283	1.009	1.283	1.009
Nonlin- ear Elastic 2D/3D,Drucker - Prager, Plate		1.283	1.009	1.283	1.009
lsotropic Plastic 2D/3D,Mohr - Coulomb, Plate		1.284	1.009	1.284	1.009
lsotropic Plastic 2D/3D,Drucker - Prager, Plate		1.272	1.000	1.272	1.000
Nonlin- ear Elastic 2D/3D,Mohr - Coulomb, Solid		1.307	1.028	1.308	1.028
Nonlin- ear Elastic 2D/3D,Drucker - Prager, Solid		1.312	1.031	1.313	1.032
lsotropic Plastic 2D/3D,Mohr - Coulomb, Solid		1.293	1.017	1.302	1.024
lsotropic Plastic 2D/3D,Drucker - Prager, Solid		1.283	1.009	1.283	1.009

References

[1] LUBLINER, J. *Plasticity theory*. Berkeley: University of California, 1990.

