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0020 – Plastic Bending with Different Plastic Strengths

Description

A cantilever is fully fixed on the left end (x = 0) and subjected to a bending moment M on the
right end according to the Figure 1. The material has different plastic strengths in tension and
compression. The problem is described by the following set of parameters.

Material Elastic-Plastic Modulus of
Elasticity

E 210000.000 MPa

Poisson's
Ratio

𝜈 0.000 −

Shear
Modulus

G 105000.000 MPa

Tensile Plastic
Strength

ft 200.000 MPa

Compressive
Plastic
Strength

fc 280.000 MPa

Geometry Cantilever Length L 2.000 m

Width w 0.005 m

Thickness t 0.005 m

Load Bending
Moment

M 6.000 Nm

Small deformations are considered and the self-weight is neglected in this example. Determine
the maximum deflection uz,max.
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Figure 1: Problem sketch

Analytical Solution

Linear Analysis

Considering linear analysis (only elasticity) the maximum deflection of the structure can be calcu-
lated as follows:
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uz,max =
ML2

2EIy
= 1.097 m (20 – 1)

Nonlinear Analysis

The cantilever is loaded by the bending momentM. Due to the different plastic strength in the
tension and compression the neutral axis is not necessary coincident with the axis of the symmetry
according to the Figure 2. The parameter z0 is introduced and it is defined so that 𝜎x(x, z0) = 0,
note that it changes during loading as well as parameters zt and zc. The bending stress is defined
by the following formula

𝜎x = −𝜅E(z − z0(x)) (20 – 2)

where 𝜅(x) is the curvature defined as 𝜅(x) = d2uz/dx2 [1].
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Figure 2: Bending stress distribution

The quantities of the bending momentM are discussed at first. The momentMet when the first
yield occurs in the tensile part, the momentMec when the first yield occurs in the compressed part
and the ultimate momentMp when the structure becomes plastic hinge are calculated as follows,
assuming ft < fc

Met = 2

0

∫
−t/2

𝜎(z)zw dz = 2

0

∫
−t/2

−
2ft
t
z2w dz = −

ftwt2

6
= −4.16̄ Nm (20 – 3)

Mec =

−zt

∫
−t/2

ftzw dz +

t/2

∫
−zt

−𝜅E(z − z0)zw dz = −5.614 Nm (20 – 4)

Mp =

z0

∫
−t/2

ftzw dz +

t/2

∫
z0

−fczw dz = −7.292 Nm (20 – 5)

where the parameters zt and z0 are obtained for each stress state from the equality of the curvature
𝜅 and from the equilibrium of the axial forces N in the cross-section (20 – 6).

N = ∫
A

𝜎(z) dA = 0 (20 – 6)
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It is obvious that for the given loading momentM the cantilever is in the elastic-plastic state and
both top and bottom edge are in the plastic state. To obtain the maximum deflection uz,max the
curvature 𝜅 has to be solved. The elastic-plastic momentMep (internal force) has to equal to the
bending momentM (external force)

Mep =

−zt

∫
−t/2

ftzw dz +

zc

∫
−zt

−𝜅E(z − z0)zw dz +

t/2

∫
zc

−fczw dz = M (20 – 7)

because of the unknown parameters zt, zc and z0 it is necessary to write further equations. The
stresses in the interface between the elastic and plastic zones are defined as follows.

ft = −𝜅E(−zt − z0) (20 – 8)

−fc = −𝜅E(zc − z0) (20 – 9)

The last condition is defined by the equilibrium of the axial forces.

N =

−zt

∫
−t/2

ftw dz +

zc

∫
−zt

−𝜅E(z − z0)w dz +

t/2

∫
zc

−fcw dz = 0 (20 – 10)

Solving equations (20 – 7), (20 – 8), (20 – 9) and (20 – 10) numerically, the curvature 𝜅 results in

𝜅 = 0.636 m−1 (20 – 11)

The maximum deflection uz,max can be then calculated as

uz,max =
L

∫
0

𝜅(L − x) dx = 1.272 m (20 – 12)

RFEM Settings

• Modeled in RFEM 5.26 and RFEM 6.01
• The element size is lFE = 0.020 m
• Geometrically linear analysis is considered
• The number of increments is 5
• Shear stiffness of the members is neglected
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Results

Structure File Entity Material model Hypothesis

0020.01 Plate Orthotropic Plastic 2D Tsai-Wu

0020.02 Member
Isotropic Nonlinear

Elastic 1D
-

0020.03 Plate Nonlinear Elastic 2D/3D Mohr-Coulomb

0020.04 Plate Nonlinear Elastic 2D/3D Drucker-Prager

0020.05 Plate Isotropic Plastic 2D/3D Mohr-Coulomb

0020.06 Plate Isotropic Plastic 2D/3D Drucker-Prager

0020.07 Solid Nonlinear Elastic 2D/3D Mohr-Coulomb

0020.08 Solid Nonlinear Elastic 2D/3D Drucker-Prager

0020.09 Solid Isotropic Plastic 2D/3D Mohr-Coulomb

0020.10 Solid Isotropic Plastic 2D/3D Drucker-Prager
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Model Analytical
Solution

RFEM 5 RFEM 6

uz,max

[m]

uz,max

[m]

Ratio
[-]

uz,max

[m]

Ratio
[-]

Orthotropic
Plastic 2D

1.272

1.277 1.004 1.277 1.004

Isotropic
Nonlinear
Elastic 1D

1.272 1.000 1.272 1.000

Nonlin-
ear Elastic
2D/3D,Mohr
- Coulomb,
Plate

1.283 1.009 1.283 1.009

Nonlin-
ear Elastic
2D/3D,Drucker
- Prager, Plate

1.283 1.009 1.283 1.009

Isotropic
Plastic
2D/3D,Mohr
- Coulomb,
Plate

1.284 1.009 1.284 1.009

Isotropic
Plastic
2D/3D,Drucker
- Prager, Plate

1.272 1.000 1.272 1.000

Nonlin-
ear Elastic
2D/3D,Mohr
- Coulomb,
Solid

1.307 1.028 1.308 1.028

Nonlin-
ear Elastic
2D/3D,Drucker
- Prager, Solid

1.312 1.031 1.313 1.032

Isotropic
Plastic
2D/3D,Mohr
- Coulomb,
Solid

1.293 1.017 1.302 1.024

Isotropic
Plastic
2D/3D,Drucker
- Prager, Solid

1.283 1.009 1.283 1.009
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