Program: RFEM 5, RSTAB 8
Category: Geometrically Linear Analysis, Large Deformation Analysis, Isotropic Linear Elasticity, Member

Verification Example: 0052 - Cantilever with the Moment Loading at the Free End

0052 - Cantilever with the Moment Loading at the Free End

Description

A cantilever is loaded by the moment M at its free end. Using the geometrically linear analysis and the large deformation analysis and neglecting beam's self-weight, determine the maximum deflections u_{x} and u_{z} at the free end.

Material	Steel	Modulus of Elasticity	E	210.000	GPa
		Shear Modulus	G	81.000	GPa
Geometry	Beam	Length	L	4000.000	mm
		Diameter	d	42.400	mm
		Wall Thickness	t	4.000	mm
Load		Bending Moment	M	3.400	kNm

Figure 1: Problem sketch [1]

Analytical Solution

Geometrically Linear Analysis

Considering the geometrically linear analysis, the problem can be solved according to the Euler-Bernoulli equation

$$
\begin{equation*}
u_{z}^{\prime \prime}(x)=-\frac{M}{E I_{y}} \tag{52-1}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
u_{z}(0)=u_{z}{ }^{\prime}(0)=0 \tag{52-2}
\end{equation*}
$$

where I_{y} is the second moment of inertia around y axis (see Figure 1):

$$
\begin{equation*}
I_{y}=\frac{\pi\left[d^{4}-(d-2 t)^{4}\right]}{64} \approx 89908.5 \mathrm{~mm}^{4} \tag{52-3}
\end{equation*}
$$

The equation (52-1) has the following solution:

$$
\begin{equation*}
u_{z, \max }=\frac{M L^{2}}{2 E I_{y}} \approx 1.441 \mathrm{~m} \tag{52-4}
\end{equation*}
$$

Figure 2: The large deformation theory

Large Deformational Analysis

A beam in the large deformation analysis is described by the nonlinear differential equation

$$
\begin{equation*}
\kappa(x)=\frac{u_{z}{ }^{\prime \prime}(x)}{\left[1+\left(u_{z}^{\prime}(x)\right)^{2}\right]^{\frac{3}{2}}}=-\frac{M}{E l_{y}} \tag{52-5}
\end{equation*}
$$

which is difficult to solve in general. However, the term on the right-hand side is constant and consequently the left-hand side, which is nothing else then the beam curvature κ, is also constant. The only curve which has constant curvature is a circle, therefore, the solution to this problem is a circle arc of radius R. We get

$$
\begin{align*}
& u_{x, \max }=R \sin \alpha-L \tag{52-6}\\
& u_{z, \max }=R(1-\cos \alpha) \tag{52-7}
\end{align*}
$$

where

$$
\begin{equation*}
R=\left|\frac{1}{\kappa(x)}\right|=\frac{E I_{y}}{M} \approx 5.553 \mathrm{~m} \tag{52-8}
\end{equation*}
$$

is the radius of the circular arc. The angle of the circular arc α equals to $\alpha=\frac{L}{R} \approx 0.72 \mathrm{rad}$.

Verification Example: 0052 - Cantilever with the Moment Loading at the Free End

RFEM 5 and RSTAB 8 Settings

- Modeled in version RFEM 5.03.0050 and RSTAB 8.03.0050
- The element size is $I_{\text {FE }}=0.400 \mathrm{~m}$
- The number of increments is 1
- Isotropic linear elastic material model is used
- Shear stiffness of members is activated
- Member division for large deformation or post-critical analysis is activated

Results

Structure File	Program	Method of Analysis
0052.01	RFEM 5	Geometrically Linear Analysis
0052.02	RFEM 5	Large Deformation Analysis
0052.03	RSTAB 8	Geometrically Linear Analysis
0052.04	RSTAB 8	Large Deformation Analysis

An excellent agreement of the analytical results with the numerical outputs were achieved:

Method of Analysis	Analytical Solution	RFEM 5		RSTAB 8	
	$u_{x, \max }$ $[\mathrm{~m}]$	$u_{x, \max }$ $[\mathrm{~m}]$	Ratio $[-]$	$u_{x, \max }$ $[\mathrm{~m}]$	Ratio $[-]$
Geometrically Linear	0.000	0.000	-	0.000	-
Large Deformation	-0.337	-0.338	1.003	-0.337	1.000

Method of Analysis	Analytical Solution	RFEM 5		RSTAB 8	
	$u_{z, \max }$ $[\mathrm{~m}]$	$u_{z, \max }$ $[\mathrm{~m}]$	Ratio $[-]$	$u_{z, \max }$ $[\mathrm{~m}]$	Ratio $[-]$
Geometrically Linear	1.441	1.441	1.000	1.441	1.000
Large Deformation	1.379	1.380	1.001	1.380	1.001

References

[1] LUMPE, G. and GENSICHEN, V. Evaluierung der linearen und nichtlinearen Stabstatik in Theorie und Software: Prüfbeispiele, Fehlerursachen, genaue Theorie. Ernst.

