Program: RFEM 5

Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Plate

Verification Example: 0073 – Analysis of Plates Subjected to Different Load Types

0073 – Analysis of Plates Subjected to Different Load Types

Description

A simply supported rectangular plate with side lengths l_x and l_y is subjected to different load types. Assuming only small deformation theory and neglecting self-weight, determine the deflection at its centroid $u_z(\frac{l_x}{2};\frac{l_y}{2})$ for each load type.

Material	Linear Elastic	Modulus of Elasticity	Ε	50.000	GPa
		Poisson's Ratio	ν	0.200	-
Geometry	Rectangle	Thickness	t	0.200	m
		Larger edge length	I _x	2.000	m
		Shorter edge length	l _y	1.000	m
Load	Uniform	Pressure	<i>p</i> ₁	10.000	MPa
	Hydrostatic	Maximal Pressure	<i>p</i> ₂	20.000	MPa
	Over a Part	Pressure	<i>p</i> ₃	40.000	MPa
		<i>x</i> -position	<i>x</i> ₃	1.500	m
		y-position	<i>y</i> ₃	0.750	m
		<i>x</i> -dimension	<i>d</i> _{x3}	0.500	m
		y-dimension	<i>d</i> _{y3}	0.250	m
	Concentrated	Force	F ₄	50.000	MN
		<i>x</i> -position	<i>x</i> ₄	1.500	m
		y-position	<i>y</i> ₄	0.750	m

Verification Example: 0073 – Analysis of Plates Subjected to Different Load Types

Figure 1: Problem Sketch

Analytical Solution

Governing differential equation of the plate subjected to the transversal load $p_z(x, y)$ has the following form [1]:

$$\frac{\partial^4 u_z}{\partial x^4} + 2 \frac{\partial^4 u_z}{\partial x^2 \partial y^2} + \frac{\partial^4 u_z}{\partial y^4} = \frac{p_z(x, y)}{D}$$
(73 - 1)

where *D* is the flexural rigidity of the plate:

$$D = \frac{Et^3}{12(1-\nu^2)}$$
(73 - 2)

By Navier's method the deflected plate surface $u_z(x, y)$ and the transversal load $p_z(x, y)$ can be expressed by a double Fourier series with coefficients U_{mn} and P_{mn} :

$$U_z(x,y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} U_{mn} \sin \frac{m\pi x}{l_x} \sin \frac{n\pi y}{l_y}$$
 (73 - 3)

$$p_z(x,y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} P_{mn} \sin \frac{m\pi x}{l_x} \sin \frac{n\pi y}{l_y}$$
(73 - 4)

 U_{mn} can be obtained by substituting (73 – 3) and (73 – 4) into (73 – 1):

$$U_{mn} = \frac{P_{mn}}{D\pi^4 \left(\frac{m^2}{l_x^2} + \frac{n^2}{l_y^2}\right)^2}$$
(73 - 5)

Substituting (73 - 5) into (73 - 3), an analytical solution for the deflection of the plate can be obtained:

$$u_{z}(x,y) = \frac{1}{D\pi^{4}} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{P_{mn}}{\left(\frac{m^{2}}{l_{x}^{2}} + \frac{n^{2}}{l_{y}^{2}}\right)^{2}} \sin \frac{m\pi x}{l_{x}} \sin \frac{n\pi y}{l_{y}}$$
(73 - 6)

Uniformly Distributed Pressure

When the plate is subjected to uniformly distributed pressure, the coefficient P_{mn} takes the following form:

$$P_{mn} = \frac{16p_1}{\pi^2 mn}$$
(73 - 7)

for positive odd integers m and n. Substituting (73 – 7) into (73 – 6), the deflection surface of the simply supported rectangular plate under uniformly distributed pressure can be derived:

$$u_{z1}(x,y) = \frac{16p_1}{D\pi^6} \sum_{m=1,3,5,\dots} \sum_{n=1,3,5,\dots} \frac{1}{mn\left(\frac{m^2}{l_x^2} + \frac{n^2}{l_y^2}\right)^2} \sin\frac{m\pi x}{l_x} \sin\frac{n\pi y}{l_y}$$
(73 - 8)

Finally, evaluation at the plate centroid:

$$u_{z1}\left(\frac{l_x}{2}, \frac{l_y}{2}\right) \approx 2.916 \text{ mm}$$
 (73 - 9)

Hydrostatic Pressure

When the plate is subjected to hydrostatic pressure, P_{mn} takes the following form:

$$P_{mn} = \frac{4}{l_x l_y} \int_0^{l_x} \int_0^{l_y} p_z(x, y) \frac{m\pi x}{l_x} \frac{n\pi y}{l_y} dxdy$$
(73 - 10)

Knowing that $p_z = \frac{p_2 x}{l_x}$, the equation (73 – 10) can be rewritten as follows:

$$P_{mn} = \frac{4p_2}{l_x^2 l_y} \int_0^{l_x} x \sin \frac{m\pi x}{l_x} dx \int_0^{l_y} \sin \frac{n\pi y}{l_y} dy$$
(73 - 11)

Evaluating the integral in (73 - 11) the coefficient P_{mn} can be significantly simplified:

$$P_{mn} = -\frac{8p_2 \cos m\pi}{mn\pi^2}$$
(73 - 12)

By substituting (73 – 12) into (73 – 6), the deflection surface of the simply supported rectangular plate subjected to the hydrostatic pressure can be derived:

$$u_{z2}(x,y) = \frac{8p_2}{D\pi^6} \sum_{m=1,2,3,\dots} \sum_{n=1,2,3,\dots} \frac{(-1)^{m+1}}{mn\left(\frac{m^2}{l_x^2} + \frac{n^2}{l_y^2}\right)^2} \sin\frac{m\pi x}{l_x} \sin\frac{n\pi y}{l_y}$$
(73 - 13)

Deflection of the plate at its centroid can be easily evaluated as:

$$u_{z2}\left(\frac{I_x}{2}, \frac{I_y}{2}\right) \approx 2.916 \text{ mm}$$
 (73 - 14)

Uniformly Distributed Pressure Over Part of the Plate

When only a part of the plate is subjected to uniformly distributed pressure, the coefficient P_{mn} takes the following form:

$$P_{mn} = \frac{4p_3}{l_x l_y} \int_{x_3 - d_{x3}/2} \int_{y_3 - d_{y3}/2} \sin \frac{m\pi x}{l_x} \sin \frac{m\pi y}{l_y} dxdy$$
(73 - 15)

which evaluates as:

$$P_{mn} = \frac{16p_3}{\pi^2 mn} H_{mn}$$
(73 - 16)

where

$$H_{mn} = \sin \frac{m\pi x_3}{l_x} \sin \frac{n\pi y_3}{l_y} \sin \frac{m\pi d_{x3}}{2l_x} \sin \frac{n\pi d_{y3}}{2l_y}$$
(73 - 17)

for all integers m and n. By substituting (73 – 16) into (73 – 6), the deflection surface of the simply supported rectangular plate having its part subjected to the uniformly distributed pressure can be derived:

$$u_{z3}(x,y) = \frac{16p_3}{D\pi^6} \sum_{m=1,2,3,\dots} \sum_{n=1,2,3,\dots} \frac{H_{mn}}{mn \left(\frac{m^2}{l_x^2} + \frac{n^2}{l_y^2}\right)^2} \sin \frac{m\pi x}{l_x} \sin \frac{n\pi y}{l_y}$$
(73 - 18)

Deflection of the plate at its centroid can be easily evaluated as:

$$u_{z3}\left(\frac{l_x}{2},\frac{l_y}{2}\right) \approx 0.776 \text{ mm}$$
 (73 - 19)

Concentrated Force

When the plate is subjected to the concentrated force, P_{mn} can be derived analogously to the previous case considering that $p_4 = \frac{F_4}{d_{x4}d_{y4}}$ where $d_{x4} \to 0$ and $d_{y4} \to 0$:

$$P_{mn} = \frac{16F_4}{\pi^2 mnd_{x4}d_{y4}} \sin \frac{m\pi x_4}{l_x} \sin \frac{n\pi y_4}{l_y} \sin \frac{m\pi d_{x4}}{2l_x} \sin \frac{n\pi d_{y4}}{2l_y}$$
(73 - 20)

However, to be able to apply the limit approach, the equation (73 - 20) must be modified. By multiplying and dividing the equation (73 - 20) by $l_x \times l_y$ the following expression can be obtained:

$$P_{mn} = \lim_{l_x \to 0, l_y \to 0} \left(\frac{4F_4}{l_x l_y} \sin \frac{m\pi x_4}{l_x} \sin \frac{n\pi y_4}{l_y} \frac{\sin \frac{m\pi d_{x4}}{2l_x} \sin \frac{n\pi d_{y4}}{2l_y}}{\frac{m\pi d_{x4}}{2l_x} \frac{n\pi d_{y4}}{2l_y}} \right)$$
(73 - 21)

which after modification becomes

$$P_{mn} = \frac{4F_4}{l_x l_y} \sin \frac{m\pi x_4}{l_x} \sin \frac{n\pi y_4}{l_y}$$
(73 - 22)

By substituting (73 - 22) into (73 - 6), the deflection surface of the simply supported rectangular plate subjected to the concentrated force can be derived:

$$u_{z4}(x,y) = \frac{4F_4}{D\pi^4 l_x l_y} \sum_{m=1,2,3,\dots} \sum_{n=1,2,3,\dots} \frac{\sin\frac{m\pi x_4}{l_x} \sin\frac{n\pi y_4}{l_y}}{\left(\frac{m^2}{l_y^2} + \frac{n^2}{l_y^2}\right)^2} \sin\frac{m\pi x}{l_x} \sin\frac{n\pi y}{l_y}$$
(73 - 23)

Deflection of the plate at its centroid can be easily evaluated as:

$$u_{z4}\left(\frac{l_x}{2},\frac{l_y}{2}\right) \approx 7.848 \text{ mm}$$
 (73 - 24)

RFEM 5 Settings

- Modeled in version RFEM 5.07.01
- Element size is $I_{FE} = 0.010 \text{ m}$
- Geometrically linear analysis is considered
- Number of increments is 1
- Kirchhoff plate theory is used

Results

Structure File	Load Type
0073.01	Uniformly Distributed Pressure
0073.02	Hydrostatic Pressure
0073.03	Uniformly Distributed Pressure Over Part of Plate
0073.04	Concentrated Force

Figure 2: Uniformly Distributed Pressure

Figure 3: Hydrostatic Pressure

Figure 4: Uniformly Distributed Pressure Over Part of the Plate

Verification Example: 0073 – Analysis of Plates Subjected to Different Load Types

Figure 5: Concentrated Pressure

Load Type	Analytical Solution	RFEM 5		
	$u_{z}\left(\frac{l_{x}}{2},\frac{l_{y}}{2}\right)$ [mm]	$u_{z}\left(\frac{l_{x}}{2},\frac{l_{y}}{2}\right)$ [mm]	Ratio [-]	
Uniformly Distributed Load	2.916	2.917	1.000	
Hydrostatic Pressure	2.916	2.917	1.000	
Uniformly Distributed Partial Pressure	0.776	0.776	1.000	
Concentrated Force	7.848	7.848	1.000	

References

[1] SZILARD, R. Theories and Application of Plate Analysis: Classical Numerical and Engineering *Method*. Hoboken, New Jersey.

