Verification (

Program: RFEM 5

Category: Isotropic Linear Elasticity, Geometrically Linear Analysis, Shell

Verification Example: 0084 – Thin-walled Spherical Vessel

0084 – Thin-walled Spherical Vessel

Description

A thin-walled spherical vessel is loaded by inner pressure p according to **Figure 1**. While neglecting self-weight, determine the von Mises stress σ_{Mises} and the radial deflection u_R of the vessel.

Material	Modulus of Elasticity	Ε	210000.0	MPa
	Poisson's Ratio	ν	0.296	_
Geometry	Radius	R	0.500	m
	Shell Thickness	t	5.000	mm
Load	Internal Pressure	p	5.000	MPa

Figure 1: Problem Sketch

Analytical Solution

The analytical solution is based on the theory of thin-walled vessels. This theory assumes the membrane stress state of the shell, thus the following conditions have to be satisfied:

- The thickness of the shell can not change discontinuously.
- The distributed loading can not change discontinuously.
- The curvature radii and positions of centers can not change discontinuously.
- The outer forces including the reaction forces have to be tangential to the shell surface.

The stress state of the thin-walled vessel is described by the Laplace equation

$$\frac{\sigma_1}{R_1} + \frac{\sigma_2}{R_2} = \frac{p}{t},$$
(84 - 1)

where σ_1 , σ_2 are stresses in meridian and parallel direction respectively and R_1 , R_2 are the radii in the appropriate directions. For the spherical vessel (84 – 1) can be simplified due to symmetry ($\sigma_1 = \sigma_2 = \sigma$, $R_1 = R_2 = R$) into the form

$$\sigma = \frac{pR}{2t}.$$
(84 - 2)

In case of thin-walled spherical vessels the principal stresses are equal to $\sigma_1 = \sigma$, $\sigma_2 = \sigma$, $\sigma_3 = 0$. The von Mises stress can be determined from the equation for the principal stresses

$$\sigma_{\rm Mises} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2} = \sigma \approx 250.000 \,\, {\rm Nmm^{-2}}. \tag{84-3}$$

The radial deflection of the vessel follows from Hooke's law

$$u_R = \frac{R}{E}(\sigma - \mu\sigma) \approx 0.419 \text{ mm.}$$
 (84 - 4)

RFEM 5 Settings

- Modeled in RFEM 5.11.01
- Element size is $I_{FE} = 0.010 \text{ m}$
- The number of increments is 10
- Isotropic linear elastic material is used

Results

Structure File	Program	Model		
0084.01	RFEM 5	Full Model		
0084.02	RFEM 5	Eighth Model		

Figure 2: RFEM 5 results - eighth model, von Mises stress $\sigma_{\rm Mises}$

Verification Example: 0084 – Thin-walled Spherical Vessel

Analytical Solution	RFEM 5 Full Model		RFEM 5 Eighth Model	
$\sigma_{ m Mises}$ [Nmm $^{-2}$]	$\sigma_{ m Mises}$ [Nmm ⁻²]	Ratio [-]	$\sigma_{ extsf{Mises}}$ [Nmm ⁻²]	Ratio [-]
250.000	250.117	1.000	249.984	1.000

Analytical	RFEM 5		RFEM 5	
Solution	Full Model		Eighth Model	
<i>u_R</i>	u _R	Ratio	u _R	Ratio
[mm]	[mm]	[-]	[mm]	[-]
0.419	0.419	1.000	0.419	1.000