Verification Example

Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro

Category: Isotropic Linear Elasticity, Dynamics, Member

Verification Example: 0106 – Natural Vibrations of a String

0106 – Natural Vibrations of a String

Description

A thin string of diameter *D* is tensioned by force *N* according to **Figure 1**. Determine the natural frequencies of the string. The problem is described by the following parameters.

Material	Steel	Modulus of Elasticity	Ε	210000.0	MPa
		Poisson's Ratio	ν	0.300	_
		Linear Density	μ	24.662	kgm⁻ ¹
Geometry		Diameter	D	0.002	m
		Length	L	1.000	m
Load		Tension Force	Ν	1000.000	N

Figure 1: Problem Sketch

Analytical Solution

Free vibrations of a string are described by the wave equation in the following form

$$\frac{\partial^2 u_z}{\partial x^2}(x,t) - \frac{1}{c^2} \frac{\partial^2 u_z}{\partial t^2}(x,t) = 0$$
 (106 - 1)

The speed of the wave propagation c is given by the linear density of the string μ and the tension force N

$$c = \sqrt{\frac{N}{\mu}} \tag{106-2}$$

The solution is sought for through separation of variables

$$u_z(x,t) = X(x)T(t)$$
 (106 - 3)

Substituting into (106 – 1) yields¹

¹ The dashed notation indicates the derivative with respect to the space coordinate $X'' = \frac{d^2 X(x)}{dx^2}$, while the dotted notation with respect to time *t*.

Verification Example - 0106 © Dlubal Software 2018

Verification Example: 0106 – Natural Vibrations of a String

$$\frac{\ddot{T}}{T} = c^2 \frac{X''}{X} = -\Omega^2$$
 (106 - 4)

The left-hand side depends only on time *t*, while the right-hand side only on the spacial coordinate *x*. Thus, both sides have to be equal to a constant, which can be shown to be negative, $-\Omega^2$, for some $\Omega > 0$.

The first part of (106 - 4)

$$\ddot{T} + \Omega^2 T = 0 \tag{106-5}$$

gives a solution in the following form

$$T(t) = A\sin(\Omega t) + B\cos(\Omega t)$$
(106 - 6)

where A, B depend on the initial conditions. The solution of the second part of (106 - 4)

$$X'' + \frac{\Omega^2}{c^2} X = 0 \tag{106-7}$$

looks analogous

$$X(x) = C\sin\left(\frac{\Omega}{c}x\right) + D\cos\left(\frac{\Omega}{c}x\right)$$
(106 - 8)

and the constants *C*, *D* depend on the boundary conditions, namely, the deflection on both ends is equal to zero

$$X(0) = 0$$
 (106 - 9)

$$X(L) = 0 (106 - 10)$$

Using the first boundary condition, there is D = 0, on the other hand, the second boundary condition yields

$$C\sin\left(\frac{\Omega}{c}L\right) = 0 \tag{106-11}$$

the solution of which is determined by the roots of the sine function, more precisely

$$\Omega_n = c \frac{n\pi}{L}, \qquad n = 1, 2, 3, \dots$$
(106 - 12)

Considering that $\Omega_n = 2\pi f_n$, the natural frequencies of the string can be calculated as

Verification Example: 0106 – Natural Vibrations of a String

$$f_n = \frac{n}{2L} \sqrt{\frac{N}{\mu}}, \qquad n = 1, 2, 3, ...$$
 (106 - 13)

and the general solution of the free vibration of the string is the sum of the mode shapes

$$u_{z}(x,t) = \sum_{n} \sin\left(\frac{\Omega_{n}}{c}x\right) \left(A_{n}\cos(\Omega_{n}t) + B_{n}\sin(\Omega_{n}t)\right)$$
(106 - 14)

where A_n and B_n are integration constants determined by the initial conditions.

RFEM 5 and RSTAB 8 Settings

- Modeled in RFEM 5.16.01 and RSTAB 8.16.01
- The string is modeled by a member of type Cable
- The member is divided into 100 parts
- Isotropic linear elastic material model is used
- Shear stiffness of members is deactivated

Results

Structure Files	Program				
0106.01	RFEM 5 – RF-DYNAM Pro				
0106.02	RSTAB 8 – DYNAM Pro				

Quantity	Analytical Solution	RFEM 5	Ratio	RSTAB 8	Ratio
<i>f</i> ₁ [Hz]	100.683	100.684	1.000	100.680	1.000
<i>f</i> ₂ [Hz]	201.366	201.367	1.000	201.335	1.000
<i>f</i> ₃ [Hz]	302.049	302.050	1.000	301.940	1.000
<i>f</i> ₄ [Hz]	402.731	402.733	1.000	402.471	0.999

Following Figure 2 shows the first four natural shapes of the investigated string.

Figure 2: First four natural shapes of the string in RFEM 5