Category: Isotropic Linear Elasticity, Dynamics, Plate

Verification Example: 0107 – Natural Vibrations of Rectangular Membrane

0107 – Natural Vibrations of Rectangular Membrane

Description

A rectangular membrane is tensioned by a line force *N* according to **Figure 1**. Determine the natural frequencies of the given membrane. The problem is described by the following parameters.

Material	Steel	Modulus of Elasticity	Ε	210000.0	MPa
		Poisson's Ratio	ν	0.300	-
		Density	ρ	7850.000	kgm⁻³
Geometry		Width	а	1.000	m
		Length	b	1.500	m
		Thickness	h	0.001	m
Load		Tension Force	Ν	10000.000	Nm ⁻¹

Figure 1: Problem Sketch

Analytical Solution

Free vibrations of a rectangular membrane are described by the wave equation in the following form

$$\frac{\partial^2 u_z}{\partial x^2}(x,y,t) + \frac{\partial^2 u_z}{\partial y^2}(x,y,t) - \frac{1}{c^2}\frac{\partial^2 u_z}{\partial t^2}(x,y,t) = 0$$
(107 - 1)

The speed of the wave propagation c is given by the density of the membrane ρ , the membrane thickness h and the tension force N

Verification Example: 0107 – Natural Vibrations of Rectangular Membrane

$$c = \sqrt{\frac{N}{\rho h}} \tag{107-2}$$

The solution is sought for through separation of variables

$$u_z(x, y, t) = X(x)Y(y)T(t)$$
 (107 - 3)

Hence, substituting into (107 – 1) yields¹

$$\frac{\ddot{T}}{T} = -\Omega^2 = c^2 \left(\frac{X''}{X} + \frac{Y''}{Y}\right)$$
(107 - 4)

The left-hand side depends on time *t*, while the right-hand side only on the spatial coordinates *x* and *y*. Thus, both sides have to be equal to a constant, which can be shown to be negative, $-\Omega^2$, for some $\Omega > 0$.

The first part of (107 - 4)

$$\dot{T} + \Omega^2 T = 0 \tag{107-5}$$

yields a solution in the following form

$$T(t) = A\sin(\Omega t) + B\cos(\Omega t)$$
(107 - 6)

where A, B depend on the initial conditions. It follows from the second part of (107 - 4)

$$\frac{X''}{X} + \frac{Y''}{Y} = -\frac{\Omega^2}{c^2}$$
(107 - 7)

that the left-hand side has to be the sum of two negative constants $-\alpha^2$ and $-\beta^2$, as the two terms contain variables that are independent from each other, more precisely,

$$-\alpha^2 - \beta^2 = -\frac{\Omega^2}{c^2} \tag{107-8}$$

Thus, the following two equations have to be solved

$$X'' + \alpha^2 X = 0$$
 (107 - 9)
 $Y'' + \beta^2 Y = 0$ (107 - 10)

Verification Example - 0107 © Dlubal Software 2018

0107 – 2

¹ The dashed notation indicates the derivative with respect to the space coordinate $X'' = \frac{d^2 X(x)}{dx^2}$, while the dotted notation with respect to time *t*.

Verification Example: 0107 – Natural Vibrations of Rectangular Membrane

The solutions are analogous to the time-variable case

$$X(x) = C\sin(\alpha x) + D\cos(\alpha x)$$
(107 - 11)

$$Y(y) = E\sin(\beta y) + F\cos(\beta y)$$
(107 - 12)

and the constants *C*, *D*, *E*, *F* depend on the boundary conditions, which, in this case, state that the deflection on the whole boundary is equal to zero

X(0) = 0	(107 – 13)
X(a) = 0	(107 – 14)
Y(0) = 0	(107 – 15)
Y(b) = 0	(107 – 16)

Using these boundary conditions, the constants *D* and *F* have to be zero. The other two boundary conditions yield

$C\sin(lpha a) = 0$	(107 – 17)
$E\sin(\beta b)=0$	(107 – 18)

which means that α , β are the roots of the sine function, more precisely

$$\alpha_m = \frac{m\pi}{a}, \qquad m = 1, 2, 3, \dots$$
 (107 - 19)

$$\beta_n = \frac{n\pi}{b}, \qquad n = 1, 2, 3, \dots$$
 (107 - 20)

Considering that $\Omega_{mn} = 2\pi f_{mn}$, when these solutions are substituted into (107 – 8) the natural frequencies of the rectangular membrane can be calculated according to the following equation

$$f_{mn} = \frac{c}{2}\sqrt{\frac{m^2}{a^2} + \frac{n^2}{b^2}}$$
(107 - 21)

For the first six natural frequencies, for mn = 11, 12, 21, 13, 22, 23, of the given membrane see the result table below.

RFEM 5 Settings

- Modeled in RFEM 5.16.01
- The element size is $I_{FE} = 0.030 \text{ m}$
- Isotropic linear elastic material model is used

Verification Example: 0107 – Natural Vibrations of Rectangular Membrane

Results

Structure Files	Program					
0107.01	RFEM 5 – RF-DYNAM Pro					
Quantity		Analytical Solution	RFEM 5	Ratio		
<i>f</i> ₁ [Hz]		21.448	21.441	1.000		
<i>f</i> ₂ [Hz]		29.743	29.726	0.999		
<i>f</i> ₃ [Hz]		37.622	37.573	0.999		
<i>f</i> ₄ [Hz]		39.904	39.854	0.999		
<i>f</i> ₅ [Hz]		42.896	42.844	0.999		
<i>f</i> ₆ [Hz]		50.475	50.401	0.999		

Figure 2 shows the first six natural shapes of the investigated membrane.

Figure 2: First six natural shapes of the membrane in RFEM 5

