Program: RFEM 5, RF-FORM-FINDING

Category: Large Deformation Analysis, Isotropic Linear Elasticity, Shell

Verification Example: 0206 – Balloon – Prestressed Membrane

0206 – Balloon – Prestressed Membrane

Description

A spherical balloon membrane is filled with gas with atmospheric pressure p_0 and volume V according to **Figure 1** (These values are used for FE model definition only). Determine the overpressure p inside the balloon due to the given isotropic membrane prestress n. The add-on module RF-FORM-FINDING is used for this purpose. Elastic deformations are neglected both in RF-FORM-FINDING and in analytical solution, self-weight is also neglected in this example. The problem is described by the following set of parameters.

Material	Polymer	Modulus of Elasticity	Ε	692.000	MPa
		Poisson's Ratio	ν	0.442	_
Geometry		Balloon Radius	r	1.500	m
		Membrane Thickness	t	1.000	mm
Load		Atmospheric Pressure	<i>p</i> ₀	0.100	MPa
		Gas Volume	V	14.137	m ³
		Membrane Prestress	n	1.000	kN/m

Figure 1: Problem Sketch

Analytical Solution

The stress state of a membrane can generally be expressed by means of the Laplace equation

$$\frac{\sigma_1}{r_1} + \frac{\sigma_2}{r_2} = \frac{p}{t},$$
(206 - 1)

Verification Example: 0206 – Balloon – Prestressed Membrane

where σ_1 , σ_2 are stresses in meridian and parallel direction respectively, r_1 , r_2 are the radii in the corresponding directions and p is the inner overpressure. This equation can be transformed into the form with normal forces

$$\frac{n_1}{r_1} + \frac{n_2}{r_2} = p. \tag{206-2}$$

In case of a spherical membrane, where $n_1 = n_2 = n$ and $r_1 = r_2 = r$, (206 – 2) can be reduced and the desired overpressure calculated as

$$p = \frac{2n}{r} \approx 1333.333 \,\mathrm{Pa.}$$
 (206 – 3)

RFEM 5 Settings

- Modeled in RFEM 5.16.01
- The element size is $I_{\rm FE} = 0.200$ m
- Isotropic linear elastic material model is used

Results

Structure Files	Program	Modul
0206.01	RFEM 5	RF-FORM-FINDING

Figure 2: Model and results in RFEM 5

Analytical Solution	RFEM 5 – RF-FORM-FINDING		
<i>р</i> [Ра]	<i>р</i> [Ра]	Ratio [-]	
1333.333	1334.918	1.001	

