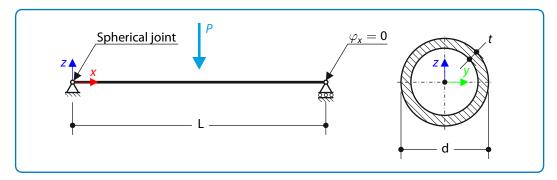


Program: RFEM 5, RF-ALUMINIUM ADM

Category: Design Check

Verification Example: 1008 – Beam in Flexure According to ADM


1008 - Beam in Flexure According to ADM

Description

Verify that a beam of different cross-sections made of Alloy 6061-T6 is adequate for the required load, as shown in Figure 1, in accord with the Aluminium Design Manual [1].

The ADM solution is demonstrated on an ADM 6 inch standard pipe—with parameters shown in the table below—the result table, however, contains many more different cross-section comparisons.

Material		Modulus of Elasticity	Е	10,100.000	ksi
		Yield Strength	F _{ty}	35.000	ksi
		Ultimate Strength	F _{tu}	38.000	ksi
Geometry	Structure	Length	L	10.000	ft
	Cross-section NPS 6"	Diameter	d	6.625	in
		Thickness	t	0.280	in
		Elastic Section Modulus	S	8.500	in
		Plastic Section Modulus	Z	11.300	in
		Radius of Gyration	r _y	1.260	in
		Torsional Constant	J	56.200	in ⁴
		Moment of Inertia	l _y	28.100	in ⁴
Load		Dead	Р	5.500	kips

Figure 1: Pipe in flexure

Verification Example: 1008 - Beam in Flexure According to ADM

ADM Solution

Section F.1 establishes safety factors of $\Omega_b=1.95$ on tensile rupture and 1.65 on all other limit states for flexure of building-type structures. The allowable stresses for 6061-T6 given in Part VI Table 2-19 are used below.

Yielding

Section F.2 addresses the limit states of yielding and rupture.

For the limit state of yielding, the allowable moment is the lesser of

$$M_{np}/\Omega_b = \min\{1.5SF_{ty}/\Omega_b, ZF_{ty}/\Omega_b\} \approx 239.697 \text{ kip} \cdot \text{in}.$$
 (1008 – 1)

Rupture

For the limit state of rupture, the allowable moment is

$$M_{nu}/\Omega_b = ZF_{tu}/k_t/\Omega_b \approx 220.205 \text{ kip\cdot in},$$
 (1008 – 2)

where $k_t = 1$.

Local buckling

The allowable moment for local buckling determined using Section F.3.3 is based on Section B.5.5.4.

$$R_b/t = \frac{d-t}{2t} \approx 11.300 < 55.400 = \lambda_1,$$
 (1008 – 3)

hence

$$F_b/\Omega_b = 39.300 - 2.7\sqrt{R_b/t},$$
 (1008 – 4)

and the allowable moment for local buckling equals

$$M_{nlb}/\Omega_b = SF_b/\Omega_b \approx 256.799 \, \mathrm{kip \cdot in}.$$
 (1008 – 5)

Lateral-torsional buckling

For closed shapes, the slenderness for lateral-torsional buckling using Section F.4.2.3 is

$$\lambda = 2.3 \sqrt{\frac{LS}{C_b \sqrt{l_y J}}} \approx 11.652 < 66 = C_c$$
 (1008 – 6)

where $C_b = 1$, therefore, the allowable moment for lateral-torsional buckling equals

Verification Example: 1008 - Beam in Flexure According to ADM

$$M_{nmb}/\Omega_b = \frac{M_{np}}{\Omega_b} \left(\left(1 - \frac{\lambda}{C_c} \right) + \frac{\pi^2 E \lambda S}{C_c^3} \right) \approx 218.191 \text{ kip·in}$$
 (1008 – 7)

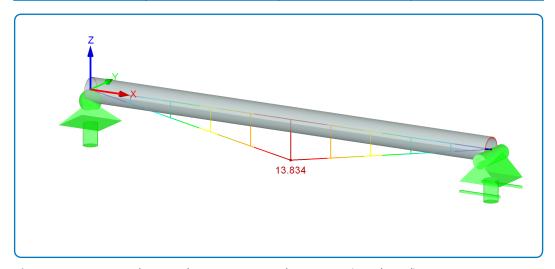
The allowable moment is the least of the allowable moments for yielding (1008 - 1), rupture (1008 - 2), local buckling (1008 - 5), and lateral-torsional buckling (1008 - 7), which is 218.191 kip·in.

From Part VI Beam Formulas Case 1, for a simply supported beam with a concentrated load *P* at the center, the maximum moment equals

$$M_{\text{max}} = PL/4 = 165.000 < 218.191 \text{ kip·in},$$
 (1008 – 8)

therefore, the 6 in schedule 40 pipe is satisfactory.

RFEM 5 Settings


- Modeled in RFEM 5.14.03
- Isotropic linear elastic model is used
- Shear stiffness of members is activated

Results

Structure File	Cross-Section Shape			
1008.01	NPS 6×SCH 40			
1008.02	Bar 0.375/1.5			
1008.03	RT 4×2×0.188			
1008.04	I 10×8.65			
1008.05	Unsymmetric Beam			
1008.06	$2.5 \times 2 \times 0.125$ Channel, No Stiffeners			
1008.06	2.5×2×0.125 Channel, Stiffeners			
1008.07	I 8×6.18			
1008.08	l 12×14.3, Symmetric			
1008.09	I 12×14.3, Unsymmetric			

Verification Example: 1008 – Beam in Flexure According to ADM

Shape	RFEM Solution [kip∙in]	ADM Solution [kip∙in]	Ratio [-]
NPS 6×SCH 40	221.251	218.191	1.014
Bar 0.375/1.5	2.305	2.310	0.998
RT 4×2×0.188	20.461	20.500	0.998
l 10×8.65	612.072	613.000	0.999
Unsymmetric Beam	41.220	41.200	1.001
2.5×2×0.125 Channel, No Stiffeners	3.843	3.810	1.009
2.5×2×0.125 Channel, Stiffeners	5.822	5.800	1.004
I 8×6.18	349.176	350.000	0.998
Symmetric I 12×14.3	1238.796	1236.000	1.002
Unsymmetric I 12×14.3	401.568	402.000	0.999

Figure 2: RFEM 5 Results - Bending Moment M_y about Y-axis (Dead Load)

References

[1] THE ALUMINIUM ASSOCIATION, Aluminium Design Manual. 2015.