Verification Example

Program: RFEM 5

Category: NAFEMS Benchmark, Large Deformation Analysis, Post-Critical Analysis, Isotropic Linear Elasticity, Dynamics, Member

Verification Example: NAFEMS NL 7 – Lee's Frame Buckling Problem

NAFEMS NL 7 – Lee's Frame Buckling Problem

Description

A curved frame called Lee's frame [1] is pinned at the end points and loaded by means of concentrated force at point A.

Determine the deflection ratio $\frac{u_z}{L}$ at point A in given load steps.

The problem is defined according The NAFEMS Non-linear Benchmarks [2] and it is described in **Figure 1** and by the following set of parameters.

Material	Isotropic	Modulus of Elasticity	E	71740.000	MPa
		Poisson's Ratio	ν	0.000	_
Geometry		Length	L	1.200	m
		Cross-section Width	d	0.020	m
		Cross-section Height	t	0.030	m
Load		Concentrated Force	Fz	31.900	kN

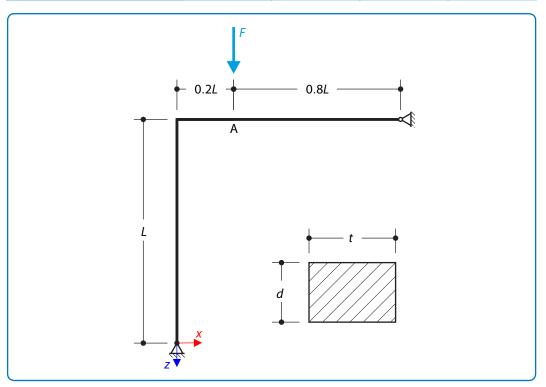
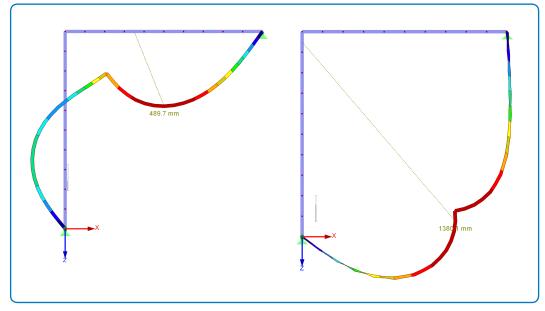


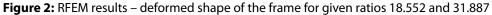
Figure 1: Problem sketch

RFEM Settings

- Modeled in RFEM 5.26.01
- Isotropic linear elastic material model is used

Results


Structure Files	Program	Solving Method	
NL07.01	RFEM 5	Post-Critical Analysis – Modified Newton-Raphson	
NL07.02	RFEM 5	Large Deformation Analysis – Dynamic Relaxation	
NL07.03	RFEM 5 – RF-DYNAM Pro	Explicit Analysis	


$\frac{F_z L^2}{EJ_v} = 18.552^*$	Target	RFEM 5	
y	<u>սշ</u> [m]	<u>սշ</u> [m]	Ratio [-]
Post-Critical Analy- sis – Modified New- ton-Raphson		0.356	0.875
Large Deformation Analysis – Dynamic Relaxation	0.407	0.324	0.796
Explicit Analysis		0.374	0.919
Abaqus Standard (Arc Length Method)		0.387	0.951

$\frac{F_z L^2}{EJ_v} = 31.887^*$	Target	RFEM 5	
Ll _y	<u>ս,</u> [m]	<u>ս,</u> [m]	Ratio [-]
Post-Critical Analy- sis – Modified New- ton-Raphson		0.781	0.996
Large Deformation Analysis – Dynamic Relaxation	0.784	0.781	0.996
Explicit Analysis		0.781	0.996
Abaqus Standard (Arc Length Method)		0.781	0.996

*Remark: The results at given ratios $\frac{F_z L^2}{EJ_y}$ can not be obtained directly. The linear interpolation of nearest points is used.

Verification Example: NAFEMS NL 7 – Lee's Frame Buckling Problem

References

- [1] LEE, S.-L., MANUEL, F. S. and ROSSOW, E. C.. Large deflections and stability of elastic frame. *Journal of the Engineering Mechanics Division*, 94(2):521-548, 1968.
- [2] THE INTERNATIONAL ASSOCIATION FOR THE ENGINEERING ANALYSIS COMMUNITY, *The NAFEMS Non-Linear Benchmarks*. NAFEMS Ltd., Glasgow, United Kingdom, 1989.

