

Fassung August 2017

Zusatzmodul

RF-STANZ Pro

Durchstanznachweis von Flächen nach EN 1992-1-1:2010/A1:2014

Programmbeschreibung

Alle Rechte, auch das der Übersetzung, vorbehalten. Ohne ausdrückliche Genehmigung der DLUBAL SOFTWARE GMBH ist es nicht gestattet, diese Programmbeschreibung oder Teile daraus auf jedwede Art zu vervielfältigen.

© Dlubal Software GmbH 2017 Am Zellweg 2 D-93464 Tiefenbach Deutschland

Tel.: +49 9673 9203-0 Fax: +49 9673 9203-51 E-mail: info@dlubal.com Web: www.dlubal.de Dlub

Inhalt

Inhalt

Seite

1.	Finleitung	3
11	Gebrauch des Handbuchs	3
2.	Theoretische Grundlagen	4
21	Bestimmung der Durchstanzlast	4
211	Durchstanzlast aus Knotenlager	6
212	Durchstanzlast aus Knotenlast	12
213	Durchstanzlast aus Stabnormalkraft	13
21.4	Durchstanzlast an Wandende	15
215	Durchstanzlast an Wandecke	16
216	Durchstanzlast aus Linienlast	16
2.1.0	Manuelle Vorgabe der Durchstanzlast	16
2.1.7	Durchstanznachweis nach EN 1992-1-1	17
2.2	ENI 1002-1-1 (CEN)	17
2.2.1	Allgemeines	17
2.2.1.1	Lastainlaitung und Nachwaisschnitta	10
2.2.1.2	Ermittlung der Beanchruchung	20
2.2.1.5	Durchstanzwiderstand ohno Durchstanzbowohrung	20 วว
2.2.1.4	Durchstanzwiderstand mit Durchstanzbewehrung	25 24
2.2.1.5	Durchstanzmachweis bei beidseitiger Lastwirkung	24 22
2.2.1.0	EN 1002 1 1/NA/2012 04 (Nationalor Anhang DIN)	
2.2.2 2 2 2 1	EN 1992-1-1/NA:2013-04 (Nationaler Annang Din)	54
2.2.2.1	Lesteinleitung und Nachweisschnitte	54
2.2.2.2	Lasternierung und Nachweisschnitte	35
2.2.2.3	Ermittung der Beanspruchung	30
2.2.2.4	Durchstanzwiderstand onne Durchstanzbewenrung	3/
2.2.2.5	Durchstanzwiderstand mit Durchstanzbewehrung	3/
3.	Arbeiten mit KF-SIANZ Pro	40
3.1	RF-STAINZ Pro starten	40
3.2	Masken	41
3.3		42
3.3.1	Basisangaben	42
3.3.2	Materialien und Flachen	46
3.3.3	Zusatzliche Offnungen	49
3.3.4	Langsbewehrung	51
3.3.5	Durchstanzknoten	52
3.3.5.1	Dubelleistensoftware HDB	54
3.3.5.2	Detailtabelle zur Bemessung	56
3.3.5.3	Wandecken und Wandenden	64
3.4	Ergebnismasken	65
3.4.1	Durchstanznachweise	65
3.4.2	Erforderliche Durchstanzbewehrung	68
3.5	Pulldownmenüs	71
3.5.1	Datei	71
3.5.2	Einstellungen	73
4.	Ergebnisauswertung	74
4.1	Darstellung der Ergebnisse	74
4.2	Ausdrucken	78

4 Dlubal

4.2.1	Ausdruckprotokoll	
4.2.2	Grafikausdruck	
5.	Beispiel: Punktgestützte Platte	
5.1	System	
5.2	Belastung	
5.3	Lagerkräfte	
5.4	Eingaben in RF-STANZ Pro	
5.5	Ergebnisse	
5.5.1	Durchstanznachweise	
5.5.2	Durchstanzbewehrung	
A .	Literatur	
B.	Index	100

1 Einleitung

Durchstanznachweise sind ein wesentlicher Bestandteil bei der Bemessung von Massivbaudecken im Grenzzustand der Tragfähigkeit. Mit dem Zusatzmodul RF-STANZ Pro für RFEM ist die Nachweisführung komfortabel möglich. Durch die Integration des Zusatzmoduls in die RFEM-Oberfläche ist auf diese Weise die lückenlose Nachweisführung für die im Modell vorhandenen Stahlbetondecken gewährleistet.

Das Modul ermöglicht den Durchstanznachweis für folgende Situationen:

- Punktförmig gelagerte bzw. punktförmig belastete Platten
- Durchstanzpunkte an Wandenden und Wandecken

Das Zusatzmodul übernimmt alle relevanten Modellparameter (wie Materialien und Dicken der in RFEM modellierten Flächenbauteile) sowie die Abmessungen der angeschlossenen Stützen und Wandenden. Des Weiteren werden bereits im Modell abgebildete Öffnungen und Deckendurchbrüche erfasst und für die Nachweisführung berücksichtigt. Die für den Nachweis anzusetzende Längsbewehrung kann komfortabel eingegeben und grafisch kontrolliert werden.

Die Nachweise erfolgen nach EN 1992-1-1 [1] mit Nationalen Anhängen wie z. B. [2] für Deutschland. Dabei kann eine vorhandene Längsbewehrung definiert und nachgewiesen oder die für den Durchstanznachweis erforderliche Längsbewehrung vom Programm ausgelegt werden. Sofern erforderlich, ermittelt RF-STANZ Pro die Durchstanzbewehrung.

Im Programm besteht ferner die Möglichkeit, Stützenkopfverstärkungen anzuordnen und den Durchstanznachweis im Stützenkopf und am Übergang vom Stützenkopf in die Platte zu führen. Es besteht auch eine Zugriffsmöglichkeit auf die Bemessungssoftware für HDB-Dübelleisten der HALFEN GMBH.

Im zentralen Ausdrucksprotokoll von RFEM können sämtliche Daten – von der Eingabe bis hin zu den Bemessungsergebnissen – übersichtlich dokumentiert werden.

Wir wünschen Ihnen viel Freude und Erfolg mit RF-STANZ Pro.

Ihr DLUBAL-Team

1.1 Gebrauch des Handbuchs

Da die Themenbereiche Installation, Benutzeroberfläche, Ergebnisauswertung und Ausdruck im RFEM-Handbuch erläutert sind, wird hier auf eine Beschreibung verzichtet. Der Schwerpunkt dieses Handbuchs liegt auf den Besonderheiten, die sich im Rahmen der Arbeit mit RF-STANZ Pro ergeben.

۰

Im Text sind die beschriebenen **Schaltflächen** (Buttons) in eckige Klammern gesetzt, z. B. [Neu]. Sie sind auch am linken Rand abgebildet. Die Begriffe, die in Dialogen, Tabellen und Menüs erscheinen, sind in *Kursivschrift* hervorgehoben, sodass die Erläuterungen gut nachvollzogen werden können.

Am Ende des Handbuchs befindet sich ein Stichwortverzeichnis. Sollten Sie nicht fündig werden, können Sie die Suchfunktion für die Produkt-Features auf unserer Website nutzen, um unter den Beiträgen zu den Massivbaumodulen eine Lösung zu finden. Auch unsere FAQs bieten eine Reihe an Hilfestellungen.

2 Theoretische Grundlagen

2.1 Bestimmung der Durchstanzlast

RF-STANZ Pro führt den Durchstanznachweis für **konzentrierte Einzellasten** und an **Wandecken** und **Wandenden** gemäß EN 1992-1-1 [1].

Als konzentrierte Einzellasten kommen im Programm RFEM folgende Lasten infrage:

- Lagerkräfte von Knotenlagern
- Knotenlasten
- Normalkräfte in lotrecht an die Platte anschließenden Stäben

Beim Nachweis der Durchstanzsicherheit ist es entscheidend, welche die lastabgewandte bzw. lastzugewandte Seite ist. Davon hängt ab, ob die Netzbewehrung der Plattenunterseite oder die der Plattenoberseite zur Ermittlung des Durchstanzwiderstandes $\nu_{\rm Rd,c}$ herangezogen wird. In RFEM wird diejenige Seite der Platte als Unterseite bezeichnet, die sich in Richtung der positiven z-Achse des lokalen Plattenkoordinatensystems befindet.

Bild 2.1: Lokales Plattenkoordinatensystem

Weitere Hinweise zum Einblenden des lokalen Achsensystems in RFEM finden Sie im Kapitel 4.4 des RFEM-Handbuchs.

Bei der im Bild 2.1 dargestellten Ausrichtung des lokalen Plattenkoordinatensystems werden somit folgende Seiten der Fläche als Plattenoberseite und Plattenunterseite bezeichnet:

Bild 2.2: Plattenoberseite und Plattenunterseite

Wenn in diesem Handbuch von Plattenober- oder Plattenunterseite gesprochen wird, so kann die relevante Seite stets anhand des lokalen Plattenkoordinatensystem identifiziert werden.

Für den Nachweis wird in RF-STANZ Pro ein Knoten an der Stelle der konzentrierten Lasteinleitung benötigt. Dies kann z. B. sein:

- ein freier Knoten, der in eine Fläche integriert und mit einer Knotenlast beaufschlagt ist
- ein Knoten, an welchem ein Knotenlager angeschlossen ist
- ein Knoten, an welchem eine Stütze anschließt
- ein Knoten, der ein Wandende oder eine Wandecke beschreibt
- ein Knoten, der eine gelagerte Linie (Linienlager) definiert
- ein Anfangs- bzw. Endknoten einer Linie, welche mit einer Linienlast beaufschlagt ist

Zur Bestimmung der angewandten Durchstanzlast für die Nachweisführung stehen im Modul RF-STANZ Pro in Abhängigkeit von der vorliegenden Bemessungssituation (z. B. Einzellast aus Stütze oder Durchstanzlast an einem Wandende) verschiedene Optionen zur Verfügung:

- Einzellast aus Stütze / Belastung / Knotenlager
- Geglättete Schubkraft über Umfang des kritischen Rundschnitts
- Nicht-geglättete Schubkraft über Umfang des kritischen Rundschnitts
- Benutzerdefinierte Eingabe der Durchstanzlast

Nähere Informationen hierzu finden Sie in den Kapiteln 2.1.1 bis 2.1.7 und im Kapitel 3.3, in dem die Eingabemasken des Moduls detailliert beschrieben sind.

Wenn der Ort der konzentrierten Lasteinleitung feststeht, sind noch Richtung und Größe der Last zu ermitteln, um die maßgebende Durchstanzlast zu erhalten. Bei dieser Durchstanzlast eines Lastfalls, einer Last- oder Ergebniskombination handelt es sich um die größte Einzellast, die senkrecht auf die Plattenseite wirkt.

Wichtig ist hierbei, dass nach der größten Durchstanzlast pro Seite der Platte gesucht wird: Bei den Möglichkeiten der konzentrierten Lasteinleitung kann es vorkommen, dass an einem Knoten die Vorzeichen der angreifenden Lasten wechseln. Wechselnde Vorzeichen bedeuten, dass die Lasteinleitungsfläche einmal die Plattenoberseite und einmal die Plattenunterseite ist, die eine Druckkraft erhält – oder dass die Last zwar stets an einer Plattenseite angreift, aber dort einmal als Druckkraft und ein anderes Mal als Zugkraft wirkt. Eine Zugkraft wird durch eine entsprechende Bewehrung auf der gegenüberliegenden Seite der Platte berücksichtigt.

2.1.1 Durchstanzlast aus Knotenlager

Es liegt ein Knotenlager an einem gemeinsamen Knoten mit der zu stützenden Platte vor. Dabei ist wichtig zu wissen, dass jedes Auflager ein eigenes Koordinatensystem (X',Y',Z') besitzt, dessen Orientierung über Größe und Richtung der Auflagerkräfte entscheidet.

Bild 2.3: Dialog Knotenlager bearbeiten

Obige Darstellung erhält man, indem mit der rechten Maustaste auf ein Knotenlager geklickt und dann die Kontextmenü-Option *Knotenlager bearbeiten* gewählt wird. In der Dialoggrafik ist das globale Koordinatensystem dargestellt.

Beim Setzen eines neuen Knotenlagers sind die Achsen des Lagerkoordinatensystems richtungsidentisch mit den Achsen des globalen Koordinatensystems. Die Ausrichtung der Achsen des Lagerkoordinatensystems kann jedoch über die Schaltfläche Page angepasst werden (siehe Bild 2.4).

Bild 2.4: Dialog Knotenlager bearbeiten mit angepasster Lagerdarstellung

Ist das Lagerkoordinatensystem nicht gedreht (also richtungsidentisch mit dem globalen Koordinatensystem), so sind die globalen Auflagerkräfte und die lokalen Lagerkräfte identisch.

2

Bild 2.5: Globale Auflagerkräfte

Dreht man jedoch das Auflagerkoordinatensystem, so verändern sich die lokalen Lagerkräfte.

Bild 2.6: Lokale und globale Auflagerkräfte bei gedrehtem Koordinatensystem

Die in Tabelle 4.1 Knoten - Lagerkräfte ausgegebenen Kräfte werden von den Vorgaben mit gesteuert, die im Projekt-Navigator eingestellt sind (Lokal bzw. Global).

4.1 Knoten - Lagerkräfte								
🔟 🗷 🔀 🖼 🖳 🖳 🔛 🔛 🔛 🔛 💷 LF1 🔹 🔹 🔹 😒 🛃								
	A	В	С	D	E	F		
Knoten		Lagerkräfte [kN]		La	germomente [kN	m]		
Nr.	Px	PY	Pz	Mx	MY	Mz		
5*	-0.06	-3.42	20.72	0.00	0.00	0.00	φγ' = 15.00 °	
6*	0.33	3.11	20.62	0.00	0.00	0.00	φγ' = 15.00 °	
7*	-0.25	3.69	20.77	0.00	0.00	0.00	φγ' = 15.00 °	
8*	-0.02	-3.38	20.71	0.00	0.00	0.00	φγ' = 15.00 °	
Σ Kräfte	0.00	0.00	82.82					
Σ Lasten	0.00	0.00	82.82					
Ergebnisse - Zusammenfassung Knoten - Lagerkräfte Knoten - Verformungen Flächen - Jokale Verformungen Flächen - dobale								

Bild 2.7: Tabelle 4.1 Knoten - Lagerkräfte mit Ausgabe der globalen Lagerkräfte

Bei den Tabellenwerten handelt es sich um die Kräfte, die in das Lager eingeleitet werden. In der RFEM-Grafik hingegen werden stets die Lagerreaktionskräfte dargestellt – also jene Kräfte, die das Lager zur Aufnahme der Belastung entgegenbringen muss. Die Lagerkräfte (Werte in der Tabelle) erhalten ein positives Vorzeichen, wenn sie als globale Lageraktionskräfte in Richtung des globalen Koordinatensystems orientiert sind. Die Lagerreaktionskräfte in der Grafik haben in der Regel ein positives Vorzeichen; die Vektoren zeigen in die Richtung, in die die Kräfte wirken.

Die beiden folgenden Bilder zeigen die globalen Lagerkräfte und die Lagerreaktionskräfte bei umgekehrten Vorzeichen der Belastung.

Bild 2.8: Globale Lagerreaktionskräfte bei negativer Belastung

4.1 Knoten - Lagerkräfte								
🔟 🗷 🐺 🐺 🐼 🚱 🔁 🔛 🔛 LF1 🔹 🔹 🗢 🖓 🤔 🗾								
	A	В	С	D	E	F		
Knoten		Lagerkräfte [kN]		La				
Nr.	Px	PY	Pz	Mx	MY	Mz		
5*	0.06	3.42	-20.72	0.00	0.00	0.00	φγ [.] = 15.00 °	
6*	-0.33	-3.11	-20.62	0.00	0.00	0.00	φ _{Y'} = 15.00 °	
7*	0.25	-3.69	-20.77	0.00	0.00	0.00	φγ' = 15.00 °	
8*	0.02	3.38	-20.71	0.00	0.00	0.00	φ _{Y'} = 15.00 °	
Σ Kräfte	0.00	0.00	-82.82					
Σ Lasten	0.00	0.00	-82.82					

Ergebnisse - Zusammenfassung Knoten - Lagerkräfte Knoten - Verformungen Rächen - Iokale Verformungen Rächen - globale

Bild 2.9: Globale Lagerkräfte bei negativer Belastung

Welche Lagerreaktionskraft wird nun als Last an RF-STANZ Pro übergeben? Bei der Beantwortung dieser Frage muss je nach Ausrichtung der Achsen unterschieden werden.

Verlaufen die Achsen des lokalen Plattenkoordinatensystems in die <u>gleichen</u> Richtungen wie die Achsen des globalen Koordinatensystems, dann entspricht die übergebene Durchstanzlast der globalen Lagerreaktionskraft in Z-Richtung des globalen Koordinatensystems.

Im folgenden Beispiel erhält RF-STANZ Pro eine maßgebende Durchstanzlast von Q = 20,00 kN. Die lastabgewandte Seite ist die Plattenoberseite.

Bild 2.10: Durchstanzlast – Lagerkoordinatensystem gleichgerichtet mit globalem Koordinatensystem

Bei umgekehrten Vorzeichen der Belastung wird ebenfalls eine maßgebende Durchstanzlast von Q = 20,00 kN an RF-STANZ Pro übergeben. Die lastabgewandte Seite ist jedoch die Plattenunterseite.

Bild 2.11: Durchstanzlast bei negativer Belastung

Besteht zwischen den Achsen des globalen Koordinatensystems und des Lagerkoordinatensystems keine Parallelität, sind aber die Achsen des Lagerkoordinatensystems und des lokalen Plattenkoordinatensystems parallel, so wird als Durchstanzlast die lokale Lagerreaktionskraft in Z-Richtung des Lagerkoordinatensystems übergeben. In folgendem Beispiel erhält RF-STANZ Pro eine maßgebende Durchstanzlast Q = 20,00 kN für das rechte vordere Auflager. Die lastabgewandte Seite ist die Plattenoberseite.

Bild 2.12: Durchstanzlast – Lagerkoordinatensystem gleichgerichtet mit Flächenkoordinatensystem

Die oben gezeigten Fälle werden bei der täglichen Arbeit einen Großteil der Nachweise ausmachen. Dabei kann die Durchstanzlast bereits in RFEM betrachtet werden. Auch die lastabgewandten und die lastzugewandten Seiten der Flächen sind sofort ersichtlich: Die Plattenunterseite ist die lastzugewandte Seite, wenn der Lagerreaktionskraft-Pfeil in die entgegengesetzte Richtung wie die z-Achse des lokalen Plattenkoordinatensystems zeigt.

Wie wird die maßgebende Durchstanzlast ermittelt, wenn die Parallelität zwischen den Koordinatensystemen nicht gegeben ist?

Zur Bestimmung der Durchstanzlast werden die Werte der Kräfte benutzt, die in das Lager eingeleitet werden. Um die Lagerreaktionskräfte zu erhalten, werden die Vorzeichen vertauscht. Dann werden die Kräfte in Richtung des lokalen Plattenkoordinatensystems transformiert, weil als Durchstanzlast nur der Kraftanteil zu berücksichtigen ist, der senkrecht zur Platte wirkt.

Sind die am lokalen Plattenkoordinatensystem orientierten Kräfte bestimmt, kann anhand des Vorzeichens der Last entschieden werden, welche die lastzugewandte und welche die lastabgewandte Seite der Platte ist: Lastzugewandt ist die Plattenunterseite, wenn der Vektor der transformierten Lagerreaktionskraft in Z-Richtung in die entgegengesetzte Richtung des Vektors der z-Achse des Plattenkoordinatensystems zeigt.

Im folgenden Beispiel erhält RF-STANZ Pro eine maßgebende Durchstanzlast von Q = 20,00 kN für das rechte vordere Auflager. Die lastabgewandte Seite ist die Plattenoberseite.

© DLUBAL SOFTWARE 2017

Bei einer Neigung der Ebene von 15° ermittelt sich die Durchstanzlast wie folgt:

 $Q = P_Z \cdot \cos 15^\circ = 20,71 \cdot \cos 15^\circ = 20,00 \text{ kN}$

Ergebniskombination

Lastfälle und Lastkombinationen führen zu einer einzigen Lagerkraft. Bei einer Ergebniskombination sind für jede Lagerschnittgröße der maximale und der minimale Wert zu bestimmen. Wenn einer der beiden Werte nicht null ist und beide Werte auch unterschiedliche Vorzeichen besitzen, wird mit diesen maximalen und minimalen Werten der Durchstanznachweis geführt.

2.1.2 Durchstanzlast aus Knotenlast

Knotenlasten sind Einzellasten an einem Knoten, der sich in der auf Durchstanzen zu untersuchenden Fläche befindet.

Bild 2.14: Knotenlast

Die Richtung und Positivdefinition einer Knotenlast ist anhand des globalen Koordinatensystems festgelegt: Eine Knotenlast ist positiv, wenn sie in Richtung einer der Achsen des globalen Koordinatensystems wirkt. Falls das lokale Plattenkoordinatensystem nicht richtungsgleich mit dem globalen Koordinatensystem ist, so gilt das Gleiche wie für die Lagerreaktionskräfte (siehe vorheriges Kapitel): Es ist jener Kraftanteil der Knotenlast zu bestimmen, dessen Vektor parallel zur z-Achse des Plattenkoordinatensystems ist.

Falls in einem Lastfall am gleichen Knoten mehrere Knotenlasten wirken, müssen die Anteile aus den Kräften in die jeweiligen Achsen addiert werden, um die Durchstanzlast zu erhalten.

Bild 2.15: Zwei Knotenlasten am gleichen Knoten

In diesen Fällen wird zunächst die Summe der Knotenlasten gebildet, die parallel zu einer der Achsen des globalen Koordinatensystems verlaufen. Anschließend findet mit dieser Summe die Transformation in Richtung der z-Achse des Plattenkoordinatensystems statt.

2 Theoretische Grundlagen

Werden in RF-STANZ Pro mehrere **Lastfälle** zur Bemessung ausgewählt, dann werden diejenigen beiden Lastfälle bestimmt, deren Summe der Knotenlast in Z-Richtung des lokalen Plattenkoordinatensystems einmal zur größten Durchstanzlast in Richtung der Plattenunterseite und einmal zur größten Durchstanzlast in Richtung der Plattenoberseite führt.

Bei einer **Lastkombination** werden die Lasten der Lastfälle unter Berücksichtigung der Lastfall-Faktoren addiert, für die dann die Schnittgrößen ermittelt werden. Für die Knotenlasten bedeutet dies, dass die resultierenden Knotenlasten der einzelnen Lastfälle unter Berücksichtigung der Lastfall-Faktoren addiert werden.

Eine **Ergebniskombination** unterscheidet sich nicht nur dadurch von einer Lastkombination, dass die Einwirkungen nicht ausschließlich Lastfälle, sondern auch Last- oder Ergebniskombinationen darstellen können. Zudem ist neben der additiven Überlagerung eine alternative Verknüpfung mit dem "oder"-Kriterium möglich. Der wesentliche Unterschied jedoch ist, dass nicht die Belastung kombiniert wird, um die Summe von Belastungen für die Ermittlung von Schnittgrößen zu erhalten, sondern die Ergebnisse in Form von Schnittgrößen überlagert werden.

Sieht man einen statischen Nachweis so, dass aus einer Belastung zunächst Schnittgrößen ermittelt werden, mit denen dann ein Bauteil zu bemessen ist, dann erübrigt sich für den Durchstanznachweis der Schritt, dass aus einer Belastung zunächst Schnittgrößen zu ermitteln sind, da die Belastung identisch mit der Schnittgröße ist. Deshalb werden bei der Ermittlung der maßgebenden Durchstanzlast je Plattenseite die maßgebenden Durchstanzlasten aus den Lastfällen, Lastund Ergebniskombinationen dieser Ergebniskombination verwendet.

2.1.3 Durchstanzlast aus Stabnormalkraft

anschneist, einnitien sich aus der Stabhormarkhaft.

Die maßgebende Durchstanzlast eines Stabes, der an einer Platte an einem gemeinsamen Knoten anschließt, ermittelt sich aus der Stabnormalkraft.

Bild 2.16: Normalkraft in anschließendem Stab

Als Druckkraft wird die Normalkraft in RFEM rot dargestellt. Sie erhält ein negatives Vorzeichen. Die Vorzeichen und die Richtung der Schnittgrößen sind durch das lokale Koordinatensystem des Stabes definiert.

Schließt die Stütze an der Plattenunterseite an und liegt eine Druckkraft vor, so geht die Durchstanzwirkung in Richtung der Plattenoberseite. Bei gleicher Anschlussseite, jedoch mit Zugkraft in der Stütze, geht die Durchstanzwirkung in Richtung der Plattenunterseite. In der Praxis tritt häufig der Fall auf, dass eine Stütze über mehrere Stockwerke verläuft.

Bild 2.17: Durchstanzlast bei durchlaufenden Stützenstäben

Liegen in den Stützen im gleichen Lastfall bzw. in der gleichen Lastkombination Druckkräfte vor, so heben sich diese in ihrer Durchstanzwirkung teilweise auf. Deshalb wird nur die Differenzkraft als maßgebende Durchstanzlast angesetzt. Die Richtung der durchstanzenden Wirkung ergibt sich aus der Betrachtung, an welcher Plattenseite die Stütze mit der betragsmäßig größeren Normalkraft vorliegt. Die Durchstanzrichtung wird dann in Richtung der Plattenseite angenommen, die der Anschlussseite dieser Stütze gegenüberliegt.

Bei unterschiedlichen Vorzeichen der Stützennormalkräfte werden die Kräfte betragsmäßig addiert. Die Richtung ergibt sich wiederum aus dem Vorzeichen und der Anschlussstelle der einzelnen Stützen.

Bild 2.18: Durchstanzlast bei unterschiedlichen Vorzeichen in anschließenden Stäben

2.1.4 Durchstanzlast an Wandende

In RF-STANZ Pro ist es auch möglich, den Durchstanznachweis an einem Wandende zu führen.

Bild 2.19: Durchstanznachweis an Wandende

Im Gegensatz zum Durchstanznachweis an einem punktgelagerten Knoten oder einer Stütze kann die Durchstanzlast nicht direkt aus der Lagerkraft bzw. der Stützennormalkraft ermittelt werden.

Zur Ermittlung der Durchstanzlast wird zunächst der kritische Rundschnitt in der Deckenplatte am Wandende angelegt. Dies geschieht in RF-STANZ Pro bereits vor der eigentlichen Bemessung, sobald der Knoten am Wandende zur Bemessung ausgewählt wird. Der vom Modul angelegte kritische Rundschnitt ist daraufhin direkt in Maske 1.5 ersichtlich.

Die Durchstanzlast ist hierbei eine Integration der Hauptschnittgröße v_{max,b} entlang des angelegten kritischen Rundschnitts.

Bild 2.20: Schubkraftverlauf entlang des kritischen Rundschnitts bei Wandende

Bei der Querkraft $v_{max,b}$ handelt es sich um eine in RFEM ermittelte Flächenschnittgröße. Um einen ausreichend genauen Schubkraftverlauf entlang des kritischen Rundschnitts zu erhalten, ist die FE-Netzweite am Durchstanzknoten zu beachten: Ist das gewählte FE-Netz zu grob, wird die resultierende Durchstanzlast am Wandende u. U. nicht ausreichend genau ermittelt. In diesem Fall erscheint nach der Berechnung ein entsprechender Hinweis (Meldung Nr. 56 in Ergebnismaske 2.1).

Im Bild 2.20 ist der geglättete Schubkraftverlauf entlang des kritischen Rundschnitts dargestellt. Ob für die Bemessung der geglättete oder der nicht-geglättete Schubkraftverlauf verwendet werden soll, kann vor der Bemessung ausgewählt werden.

2.1.5 Durchstanzlast an Wandecke

Analog zu den im Kapitel 2.1.4 beschriebenen Wandenden ist es auch möglich, einen Durchstanznachweis an einer Wandecke durchzuführen. Die Vorgehensweise ist die gleiche: Für die Bemessung ist der Knoten anzugeben, der die Verbindungsstelle von Wandecke und Decke repräsentiert. Der kritische Rundschnitt zur Bestimmung der Durchstanzlast wird ebenfalls automatisch angelegt.

Bild 2.21: Schubkraftverlauf an Wandecke

Auch für eine Wandecke gilt der Hinweis auf die eingestellte FE-Netzweite. Hier lässt sich ebenfalls vor der Bemessung festlegen, ob zur Ermittlung der Durchstanzlast der geglättete oder der nicht-geglättete Schubkraftverlauf entlang des kritischen Rundschnitts verwendet werden soll.

2.1.6 Durchstanzlast aus Linienlast

RF-STANZ Pro ermöglicht – analog zum Durchstanzen an einem Wandende oder einer Wandecke – auch der Nachweis an einer Linie, die mit einer Linienlast belastet ist. Hierbei können Linienlasten aus Wänden berücksichtigt werden, obwohl das lastabtragende Bauteil "Wand" nicht im Modell eingegeben wurde.

Bild 2.22: Darstellung des Durchstanzpunktes an Linienlasten (hier Wandecke)

Wichtig ist, dass eine "echte" Linienlast vorliegt und dass die Linie in die zugehörige Fläche integriert ist. Eine freie Linienlast (ohne zugehörige, in die Fläche integrierte Linie) kann nicht angesetzt werden, da hier die Endknoten für das Bestimmen des Durchstanzpunktes fehlen.

2.1.7 Manuelle Vorgabe der Durchstanzlast

In den Kapitel 2.1.1 bis 2.1.5 wurde die direkte Ermittlung der Durchstanzlast aus den REFM-Ergebnissen vorgestellt. Alternativ ist es in RF-STANZ Pro möglich, die Durchstanzlast auch manuell vorzugeben. Weitere Hinweise hierzu finden Sie im Kapitel 3.3.5.2 auf Seite 58.

2.2 Durchstanznachweis nach EN 1992-1-1

RF-STANZ Pro führt die Nachweise nach EN 1992-1-1:2004/A1:2014 [1] mit den entsprechenden nationalen Anhängen. Dieses Kapitel stellt die Nachweisführung nach EN 1992-1-1 (CEN) und die Bemessung nach DIN EN 1992-1-1 vor.

2.2.1 EN 1992-1-1 (CEN)

2.2.1.1 Allgemeines

Durchstanzen kann infolge konzentrierter Lasten oder Auflagerreaktionen eintreten, die auf einer relativ kleinen Lasteinleitungsfläche A_{load} auf Decken oder Fundamente wirken.

EN 1992-1-1 verwendet für den Nachweis gegen Durchstanzen im Grenzzustand der Tragfähigkeit das im Bild 2.23 dargestellte Bemessungsmodell.

Bemessungsmodell für den Nachweis der Sicherheit gegen Durchstanzen im Grenzzustand der Tragfähigkeit

Bild 2.23: Bemessungsmodell mit Rundschnitt für Innenstütze nach [1]

Nach EN 1992-1-1 sind folgende Nachweise zu führen:

Nachweis bei Platten ohne Durchstanzbewehrung

 $\bullet \quad \nu_{\rm Ed} < \nu_{\rm Rd,c}$

Der Bemessungswert des Durchstanzwiderstandes $\nu_{\text{Rd},c}$ ohne Durchstanzbewehrung je Flächeneinheit muss größer oder gleich der einwirkenden Querkraft ν_{Ed} je Flächeneinheit im kritischen Rundschnitt u₁ sein.

Nachweis bei Platten und Fundamenten mit Durchstanzbewehrung

• $\nu_{\rm Ed} < \nu_{\rm Rd,max}$

Der Bemessungswert des maximalen Durchstanzwiderstandes $\nu_{\rm Rd,max}$ je Flächeneinheit muss größer oder gleich der einwirkenden Querkraft $\nu_{\rm Ed}$ je Flächeneinheit sein.

 $\bullet \quad \nu_{\rm Ed} < \nu_{\rm Rd,cs}$

Der Bemessungswert des Durchstanzwiderstandes $\nu_{\rm Rd,cs}$ der Durchstanzbewehrung je Flächeneinheit muss größer oder gleich der einwirkenden Querkraft $\nu_{\rm Ed}$ je Flächeneinheit sein.

 $\bullet \quad \nu_{\rm Rd,c} \geq \nu_{\rm Ed,out}$

Der Bemessungswert des Durchstanzwiderstandes $\nu_{\text{Rd,c}}$ ohne Durchstanzbewehrung je Flächeneinheit muss größer oder gleich der einwirkenden Querkraft $\nu_{\text{Ed,out}}$ je Flächeneinheit außerhalb des durchstanzbewehrten Bereichs im äußeren Rundschnitt u_{out} sein.

2.2.1.2 Lasteinleitung und Nachweisschnitte

Der kritische Rundschnitt u₁ darf im Allgemeinen in einem Abstand von 2,0 d von der Lasteinleitungsfläche angenommen werden. Er muss in der Regel einen möglichst geringen Umfang aufweisen.

Typische kritische Rundschnitte um Lasteinleitungsflächen

Bild 2.24: Typische Rundschnitte um Lasteinleitungsflächen

Rundschnitte in einem Abstand kleiner als 2,0 d sind in der Regel zu berücksichtigen, wenn der konzentrierten Last ein hoher Gegendruck (z. B. Sohldruck auf Fundament) oder die Auswirkungen einer Last oder einer Auflagerreaktion innerhalb eines Abstands von 2 d vom Rand der Lasteinleitungsfläche entgegenstehen.

Weitere Hinweise zur Begrenzung der Größe der Lasteinleitungsfläche nach DIN EN 1992-1-1 finden Sie auch im Kapitel 2.2.1.2. Die im deutschen NA beschriebenen Grenzen für die Lasteinleitungsflächen werden im Allgemeinen bei der Berechnung nach EN 1992-1-1 angesetzt.

Die statische Nutzhöhe der Platte wird als konstant angenommen und darf im Allgemeinen nach [1] Gl. (6.32) wie folgt ermittelt werden:

$$d_{\rm eff} = \frac{d_y + d_z}{2} \tag{2.1}$$

2 Theoretische Grundlagen

Für Lasteinleitungsflächen, deren Rand nicht weiter als 6 d von Öffnungen entfernt ist, ist ein der Öffnung zugewandter Teil des betrachteten Rundschnitts als unwirksam zu betrachten. Dieser Umfangsabschnitt wird durch den Abstand der Schnittpunkte der Verbindungslinien mit dem betrachteten Rundschnitt nach folgendem Bild bestimmt.

Bild 2.25: Rundschnitte – Öffnungen

Bei Lasteinleitungsflächen, die sich in der Nähe eines freien Randes oder einer freien Ecke befinden, ist in der Regel der kritische Rundschnitt wie folgt anzunehmen.

Der Nachweisquerschnitt ergibt sich entlang des kritischen Rundschnitts mit der statischen Nutzhöhe *d*. Bei Platten mit konstanter Dicke verläuft der Nachweisquerschnitt senkrecht zur Mittelebene der Platte. Bei Platten oder Fundamenten mit veränderlicher Dicke (gilt nicht für Stufenfundamente) darf als wirksame statische Nutzhöhe die am Rand der Lasteinleitungsfläche auftretende statische Nutzhöhe wie in Bild 2.27 dargestellt angenommen werden.

Der Durchstanzwiderstand ist in der Regel am Stützenrand und entlang des kritischen Rundschnitts u_1 nachzuweisen. Wenn eine Durchstanzbewehrung erforderlich wird, ist ein weiterer Rundschnitt $u_{out,ef}$ zu ermitteln, in dem keine Durchstanzbewehrung mehr erforderlich ist.

Die äußerste Reihe der Durchstanzbewehrung darf in der Regel nicht weiter als $k \cdot d$ von $u_{out,ef}$ entfernt sein. Der empfohlene Wert für k ist 1,5. Die Berechnung von u_{out} ist im Kapitel 2.2.1.5 beschrieben.

2.2.1.3 Ermittlung der Beanspruchung

Bei der Ermittlung der maximal einwirkenden Querkraft je Flächeneinheit unterscheidet die Norm [1] zwischen der maximal einwirkenden Querkraft je Flächeneinheit für eine **Platte** gemäß Gl. (6.38) und der maximal einwirkenden Querkraft für ein **Stützenfundament** gemäß Gl. (6.49) bzw. Gl. (6.51).

Einwirkende Querkraft bei Platten

Für die Ermittlung der einwirkenden Querkraft ist der Bemessungswert der gesamten aufzunehmenden Querkraft V_{Ed} durch das Produkt aus Umfang u₁ des betrachteten Rundschnitts und mittlerer Nutzhöhe *d* zu teilen und mit dem Beiwert β zur Berücksichtigung der nicht rotationssymmetrischen Querkraftverteilung zu multiplizieren. Der Bemessungswert der einwirkenden Querkraft v_{Ed} je Flächeneinheit gemäß [1] Abschnitt 6.4.3 ist somit wie folgt:

$$\nu_{Ed} = \frac{\beta \cdot V_{Ed}}{u_1 \cdot d} \tag{2.2}$$

mit

V_{Ed} : Gesamte aufzunehmende Querkraft

u₁ : Umfang des kritischen Rundschnitts

- d : Mittlere Nutzhöhe der Platte, die als $(d_y + d_z)/2$ angenommen werden darf
 - d_y, d_z Statische Nutzhöhe der Platte in y- bzw. z-Richtung in der Querschnittsfläche des betrachteten Rundschnitts
- β : Beiwert zur Berücksichtigung nichtrotationssymmetrischer Querkraftverteilung. Die Bestimmung des Beiwerts β ist unter Zugrundelegung einer vollplastischen Schubspannungsverteilung nach 6.4.3 (3) oder vereinfacht mit Näherungswerten nach [1] Bild 6.21 möglich (siehe folgende Seiten).

Beiwert β unter Berücksichtigung vollplastischer Schubspannungsverteilung

$$\beta = 1 + k \cdot \frac{M_{Ed}}{V_{Ed}} \cdot \frac{u_1}{W_1}$$
(2.3)

mit

- k : Beiwert infolge des Verhältnisses der Stützenabmessungen c₁ und c₂
 - c1 Abmessung der Stütze parallel zur Lastausmitte (siehe folgendes Bild)
 - c₂ Abmessung der Stütze senkrecht zur Lastausmitte

Tabelle 6.1 — Werte für k bei rechteckigen Lasteinleitungsflächen

c_{1}/c_{2}	≤ 0,5	1,0	2,0	≥ 3,0
k	0,45	0,60	0,70	0,80

Querkraftverteilung infolge eines Kopfmoments einer Innenstütze

Bild 2.29: Werte für k

u₁ : Umfang des kritischen Rundschnitts

W₁: $c_1^2/2 + c_1 \cdot c_2 + 4 c_2 \cdot d + 16 d^2 + 2 \pi \cdot d \cdot c_1$

Die Gleichung (6.39) nach [1] (CEN) ermittelt den Beiwert β für einachsige Ausmitte der Durchstanzlast. Der deutsche Nationale Anhang gibt in Gl. (NA.6.39.1) eine Lösung für eine zweiachsige Ausmitte vor, die im Programm auch für alle Nationalen Anhänge verwendet wird:

$$\beta = 1 + \sqrt{\left(k_x \frac{M_{Ed,x}}{V_{Ed}} \cdot \frac{u_1}{W_{1,x}}\right)^2 + \left(k_y \frac{M_{Ed,y}}{V_{Ed}} \cdot \frac{u_1}{W_{1,y}}\right)^2}$$
(2.4)

Beiwert β mittels Näherungswerten

Nach [1] Abschnitt 6.4.3 (6) dürfen bei Tragwerken, deren Stabilität gegen seitliches Ausweichen von der Rahmenwirkung zwischen Platte und Stütze unabhängig ist und bei denen sich die Längen der angrenzenden Felder nicht um mehr als 25 % unterscheiden, folgende Näherungswerte für β verwendet werden:

- β = 1,0 (Innenstütze)
- $\beta = 1,4$ (Randstütze)
- $\beta = 1,5$ (Eckstütze)

Dabei handelt es sich um die empfohlenen Werte. Die landesspezifischen β -Werte können den Nationalen Anhängen entnommen werden.

Ob diese Näherungswerte verwendet werden dürfen, muss der Benutzer für jeden Durchstanzknoten selbst entscheiden, da das Programm oben beschriebenen Voraussetzungen nicht überprüfen kann. Diese Entscheidung ist in Maske 1.5 Durchstanzknoten zu treffen (siehe Bild 2.30).

Bild 2.30: Auswahl des Beiwerts β in Maske 1.5 Durchstanzknoten

Einwirkende Querkraft bei Stützenfundamenten

Die Querkrafttragfähigkeit von Stützenfundamenten ist in der Regel in kritischen Rundschnitten innerhalb von 2 d vom Stützenrand nachzuweisen. Die Lage dieses kritischen Rundschnittes ist iterativ zu ermitteln.

Die Ermittlung der Querkraft gemäß [1] Abschnitt 6.4.4 (2) ist von der Belastungsart abhängig.

Zentrische Belastung

$$\nu_{Ed} = \frac{V_{Ed,red}}{u \cdot d} \tag{2.5}$$

mit

V_{Ed} : Einwirkende Querkraft

$$V_{Ed,red} = V_{Ed} - \varDelta V_{Ed}$$

 ΔV_{Ed} : Resultierende, nach oben gerichtete Kraft innerhalb des Rundschnitts (der nach oben gerichtete Sohldruck abzüglich der Fundamenteigenlast)

Bild 2.31: Kritischer Rundschnitt und Abzug Sohlpressung bei Fundamenten

Exzentrische Belastung

$$V_{Ed} = \frac{V_{Ed, red}}{u \cdot d} \left(1 + k \frac{M_{Ed}}{V_{Ed, red}} \cdot \frac{u}{W} \right)$$
(2.6)

Der in Klammern gesetzte Teil der Gleichung repräsentiert den Lasterhöhungsfaktor β .

2.2.1.4 Durchstanzwiderstand ohne Durchstanzbewehrung

Der Durchstanzwiderstand für **Platten** oder Fundamente ohne Durchstanzbewehrung ermittelt sich gemäß [1] Abschnitt 6.4.4 (1) wie folgt:

$$\nu_{Rd,c} = C_{Rd,c} \cdot k \cdot (100 \,\rho_l \cdot f_{ck})^{\frac{1}{3}} + k_1 \sigma_{cp} \ge \nu_{\min} + k_1 \cdot \sigma_{cp} \tag{2.7}$$

mit

 $\begin{array}{lll} \mathsf{C}_{\mathsf{Rd},\mathsf{c}} & : & \frac{0,18}{\gamma_{\mathsf{c}}} \\ \mathsf{k} & : & 1 + \sqrt{\frac{200}{\mathsf{d}}} \leq 2,0 & \mathsf{mit}\,\mathsf{d}\,\mathsf{in}\,[\mathsf{mm}] \\ \rho_{\mathsf{l}} & : & \sqrt{\rho_{\mathsf{l},\mathsf{z}}\cdot\rho_{\mathsf{l},\mathsf{y}}} \leq 0,02 \\ \rho_{\mathsf{l},\mathsf{z}},\rho_{\mathsf{l},\mathsf{y}} & : & \mathsf{Bewehrungsgrad}\,\mathsf{bezogen}\,\mathsf{auf}\,\mathsf{verankerte}\,\mathsf{Zugbewehrung}\,\mathsf{in}\,\mathsf{z}\text{-}\,\mathsf{bzw}.\,\mathsf{y}\text{-}\mathsf{Richtung}\,\mathsf{in}\,\mathsf{f}_{\mathsf{ck}} \\ \mathsf{f}_{\mathsf{ck}} & : & \mathsf{Charakteristische}\,\mathsf{Betondruckfestigkeit}\,\mathsf{in}\,[\mathsf{N}/\mathsf{mm}^2] \\ \mathsf{k}_1 & : & \mathsf{0},\mathsf{1} \\ \sigma_{\mathsf{cp}} & : & \frac{\sigma_{\mathsf{c},\mathsf{y}}+\sigma_{\mathsf{c},\mathsf{z}}}{2} \\ & & \mathsf{Betonnormalspannungen}\,\mathsf{in}\,\mathsf{y}\text{-}\,\mathsf{und}\,\mathsf{z}\text{-}\mathsf{Richtung}\,\mathsf{im}\,\mathsf{kritischen}\,\mathsf{Querschnitt}\,\mathsf{in} \\ & & [\mathsf{N}/\mathsf{mm}^2], \,\mathsf{für}\,\mathsf{Druck}\,\mathsf{positiv}:\,\sigma_{\mathsf{c},\mathsf{y}} = \frac{\mathsf{N}_{\mathsf{Ed},\mathsf{y}}}{\mathsf{A}_{\mathsf{c},\mathsf{y}}}\,\mathsf{und}\,\sigma_{\mathsf{c},\mathsf{z}} = \frac{\mathsf{N}_{\mathsf{Ed},\mathsf{z}}}{\mathsf{A}_{\mathsf{c},\mathsf{z}}} \\ & \nu_{\mathsf{min}} & : & \mathsf{0},\mathsf{035}\,\mathsf{k}^{\frac{3}{2}}\cdot\mathsf{f}_{\mathsf{ck}}^{\frac{1}{2}} & \mathsf{siehe}\,[1]\,\mathsf{Gl}.\,(\mathsf{6.3N}) \end{array}$

Die Querkraftfähigkeit eines **Stützenfundaments** ohne Durchstanzbewehrung ist nach [1] Abschnitt 6.4.4 (2) zu bestimmen.

$$\nu_{Rd,c} = C_{Rd,c} \cdot \mathbf{k} \cdot (100 \,\rho_l \cdot f_{ck})^{\frac{1}{3}} \cdot 2 \,\frac{d}{a} \ge \nu_{\min} \cdot 2 \,\frac{d}{a} \tag{2.8}$$

mit

- a: Abstand vom Stützenrand zum betrachteten Rundschnitt
- d : Mittlere Nutzhöhe der Platte, die als $(d_v + d_z)/2$ angenommen werden darf

Ob eine Durchstanzbewehrung erforderlich ist, hängt davon ab, ob der Durchstanzwiderstand $\nu_{\rm Rd,c}$ größer ist als die maximal einwirkende Querkraft $\nu_{\rm Ed}$ je Flächeneinheit. Erweist sich $\nu_{\rm Rd,c}$ als größer, so ist der Nachweis erfüllt und das Programm beendet die Bemessung erfolgreich. Ist jedoch $\nu_{\rm Rd,c}$ kleiner als $\nu_{\rm Ed}$, dann ist eine Durchstanzbewehrung erforderlich.

Wenn der Benutzer vorgegeben hat, dass die Längsbewehrung für den Durchstanznachweis ausgelegt werden kann, vergrößert das Programm schrittweise den Längsbewehrungsgrad durch eine Erhöhung der Längsbewehrung. Sollte der Durchstanzwiderstand $\nu_{\rm Rd,c}$ ohne Durchstanzbewehrung selbst bei maximal zulässigem Längsbewehrungsgrad immer noch kleiner sein als die maximal einwirkende Querkraft $\nu_{\rm Ed}$ je Flächeneinheit, so ist eine Durchstanzbewehrung unumgänglich.

Der Nachweis ohne Durchstanzbewehrung ist in folgendem Ablaufdiagramm dargestellt.

In Bild 2.32 werden folgende Abkürzungen verwendet:

$ u_{Ed}$:	Einwirkende Querkraft je Flächeneinheit
$ u_{Rd,c}$:	Durchstanzwiderstand je Flächeneinheit
$ u_{ m Rd,c,min}$:	Mindestdurchstanzwiderstand nach [1] Gl. (6.3N)
$ ho_{I,prov}$:	Definierter Längsbewehrungsgrad
$\rho_{I,req}$:	Erforderlicher Längsbewehrungsgrad
$ ho_{I,req,\nuRd,c}$:	Erforderlicher Längsbewehrungsgrad zur Sicherstellung von $\nu_{\rm Rd,c}$

Bild 2.32: Programmablaufplan ohne Durchstanzbewehrung

2.2.1.5 Durchstanzwiderstand mit Durchstanzbewehrung

Ist eine Durchstanzbewehrung laut Benutzereinstellung zulässig, so sind für die Platte zwei Nachweise zu führen:

- Nachweis des maximalen Durchstanzwiderstandes ($\nu_{\rm Rd,max} \ge \nu_{\rm Ed}$)
- Nachweis des Durchstanzwiderstandes mit Durchstanzbewehrung ($\nu_{\rm Rd,cs} \ge \nu_{\rm Ed}$)

Der Nachweis des maximalen Durchstanzwiderstandes $\nu_{\text{Rd,max}}$ wird nicht am kritischen Rundschnitt, sondern gemäß [1] Abschnitt 6.4.5 (3) am Stützenanschnitt geführt.

Die maximal einwirkende Querkraft je Flächeneinheit ν_{Ed} an der Lasteinleitungsfläche ermittelt sich nach [1] Gl. (6.53) wie folgt:

$$\nu_{Ed} = \beta \cdot \frac{V_{Ed}}{u_0 \cdot d} \le \nu_{Rd,\max}$$
(2.9)

mit

- β : Beiwert wie für maximale Querkraft des kritischen Rundschnitts (siehe Kapitel 2.2.1.3)
- $\begin{array}{ll} u_0: \mbox{ für Innenstütze } & u_0 = \mbox{umfassender minimaler Umfang} \\ \mbox{ für Randstütze } & u_0 = c_2 + 3 \mbox{ d} \leq c_2 + 2 \mbox{ c}_1 \\ \mbox{ für Eckstütze } & u_0 = 3 \mbox{ d} \leq c_1 + c_2 \\ \mbox{ c}_1, c_2 & \mbox{ Stützenabmessungen nach [1] Bild 6.20 } \end{array}$

Der maximale Durchstanzwiderstand $\nu_{\rm Rd,max}$ ist dem Nationalen Anhang zu entnehmen. Der empfohlene Wert ist:

$$\nu_{Rd,\max} = 0.4 \nu \cdot f_{cd}$$

mit

$$\begin{split} \nu &= 0,6 \left(1 - \frac{f_{ck}}{250}\right): \text{ mit } f_{ck} \text{ in } [\text{N}/\text{mm}^2] \\ f_{cd} &: \text{ Bemessungswert der Betondruckfestigkeit in } [\text{N}/\text{mm}^2] \end{split}$$

Nach [1] CEN kann kein Einfluss auf den maximalen Durchstanzwiderstand $\nu_{Rd,max}$ durch eine Erhöhung der Längsbewehrung genommen werden. Einige Nationalen Anhänge jedoch sehen eine solche Möglichkeit vor (siehe Kapitel 2.2.2 für deutschen Anhang).

Der Programmablaufplan für [1] CEN zum Nachweis des maximalen Durchstanzwiderstandes $\nu_{\text{Rd.max}}$ sieht wie folgt aus:

Wie der Ablaufplan zeigt, wird als Erstes untersucht, ob der Benutzer eine Durchstanzbewehrung zugelassen hat. Anschließend wird der maximale Durchstanzwiderstand $\nu_{\rm Rd,max}$ ermittelt. Falls dieser kleiner ist als die maximal einwirkende Querkraft $\nu_{\rm Ed}$ je Flächeneinheit, ist die Bemessung zu Ende.

Ist $\nu_{Rd,max}$ größer als ν_{Ed} , so kann die erforderliche Durchstanzbewehrung A_{sw} in einem Rundschnitt um die Stütze aus [1] Gl. (6.52) bestimmt werden.

$$\operatorname{erf} A_{sw} = \frac{\left(\nu_{Ed} - 0.75 \,\nu_{Rd,c}\right) \cdot u_1 \cdot d}{1.5 \, \frac{d}{S_r} \cdot f_{ywd,ef} \cdot \sin \alpha} \qquad \text{in [mm^2]}$$

mit

- ν_{Ed} : Maximal einwirkende Querkraft je Flächeneinheit im kritischen Rundschnitt
- s_r : Radialer Abstand der Durchstanzbewehrungsreihen in [mm]
- $\label{eq:fywd,ef} \begin{array}{l} f_{ywd,ef}: \mbox{ Wirksamer Bemessungswert der Streckgrenze der Durchstanzbewehrung} \\ f_{ywd,ef} = 250 + 0.25 \, d \leq f_{ywd} \quad \mbox{ in } [N/mm^2] \end{array}$
- u₁ : Umfang des kritischen Rundschnitts in [mm]
- α : Winkel zwischen Durchstanzbewehrung und Plattenebene

Mindestdurchstanzbewehrung

Die EN 1992-1-1 sieht eine Mindestdurchstanzbewehrung vor: Gemäß Abschnitt 9.4.3 (2) gilt, dass eine erforderliche Durchstanzbewehrung nicht kleiner sein darf als folgender Wert:

$$A_{\text{sw,min}} \ge \frac{0.08 \sqrt{\frac{f_{\text{ck}}}{f_{\text{yk}}}}}{\frac{1.5 \sin \alpha + \cos \alpha}{s_{\text{r}} \cdot s_{\text{t}}}}$$
(2.10)

mit

- α : Winkel zwischen Durchstanzbewehrung und Hauptbewehrung (bei vertikalen Bügeln: $\alpha = 90^{\circ}$ und sin $\alpha = 1$)
- s_r : Abstand der Bügel der Durchstanzbewehrung in radialer Richtung
- st : Abstand der Bügel der Durchstanzbewehrung in tangentialer Richtung
- f_{ck} : Betondruckfestigkeit in [N/mm²]

Der Bemessungswert des Durchstanzwiderstandes je Flächeneinheit bei einer Platte mit Durchstanzbewehrung ermittelt sich nach [1] Gleichung (6.52) wie folgt:

$$\nu_{Rd,cs} = 0.75 \,\nu_{Rd,c} + 1.5 \,\frac{d}{s_r} \cdot A_{sw} \cdot f_{ywd,ef} \cdot \frac{1}{u_1 \cdot d} \cdot \sin \alpha \le k_{\max} \cdot \nu_{Rd,c} \tag{2.11}$$

mit

- d : Mittelwert der statischen Nutzhöhen in den orthogonalen Richtungen in [mm]
- u₁ : Umfang des kritischen Rundschnitts
- s_r : Radialer Abstand der Durchstanzbewehrungsreihen in [mm]
- A_{sw} : Durchstanzbewehrung in einer Bewehrungsreihe um die Stütze in [mm²]

 $\label{eq:fywd,ef} \begin{array}{l} f_{ywd,ef}: \mbox{ Wirksamer Bemessungswert der Streckgrenze der Durchstanzbewehrung} \\ f_{ywd,ef} = 250 + 0.25d \leq f_{ywd} \quad \mbox{ in } [N/mm^2] \end{array}$

- α : Winkel zwischen Durchstanzbewehrung und Plattenebene
- k_{max} : Faktor zur Begrenzung der Maximaltragfähigkeit, die durch Anwendung einer Durchstanzbewehrung erreicht werden kann
- $\nu_{\text{Rd,c}}$: Durchstanzwiderstand nach [1] Abschnitt 6.4.4

Bild 2.34: Programmablaufplan zur Berechnung der Durchstanzbewehrung

Folgendes Ablaufdiagramm zeigt die Berechnung der erforderlichen Durchstanzbewehrung.

Bild 2.35: Programmablaufplan zur Berechnung der erforderlichen Durchstanzbewehrung

Da nach [1] die erforderliche Durchstanzbewehrung stets im kritischen Rundschnitt ermittelt wird, ist der Programmablauf für lotrechte und für geneigte Durchstanzbewehrung identisch.

2 Theoretische Grundlagen

Der erste innere Rundschnitt kann gemäß [1] in einem Abstand von 0,5 d angelegt werden. Der durchstanzbewehrte Bereich endet in einem Abstand von 1,5 d vom äußeren Rundschnitt. Er ist nach den Regeln des Abschnitts 6.4.5 (4) zu bestimmen. Der Umfang u_{out,ef} des äußeren Rundschnitts ermittelt sich wie folgt:

$$u_{\text{out,ef}} = \beta \cdot \frac{V_{Ed}}{\nu_{Rd,c} \cdot d}$$
(2.12)

Innerhalb des durchstanzbewehrten Bereichs können die Zwischenabstände der Durchstanzreihen bis zu einem Maximalwert beliebig angeordnet werden. Um die Lage des äußeren Rundschnitts zu bestimmen, gibt es zwei Möglichkeiten:

- Der Benutzer gibt den äußeren Rundschnitt über den Abstand I_{wa} vor.
- Der äußere Rundschnitt ergibt sich durch iterative Ermittlung.

Benutzerdefinierte Vorgabe des äußeren Rundschnitts

In [1] Abschnitt 9.4.3 (4) und Bild 9.10 ist vorgeschrieben ist, dass der erste innere Rundschnitt im Abstand von 0,3 d bis 0,5 d und der äußere Rundschnitt im Abstand von 1,5 d vom letzten inneren Rundschnitt zu führen ist. Daher kann bei einem vorgegebenen Abstand I_{wa} des äußeren Rundschnitts der verbleibende Abstand **x** berechnet werden. Der Abstand des ersten bewehrten Rundschnitts wird dabei mit 0,5 d angenommen.

Bild 2.36: Rundschnitte

Der Abstand x berechnet sich wie folgt:

 $x = l_{wa} - 2 d$

Ist x kleiner null, so ist der benutzerdefinierte Abstand des äußeren Rundschnittes zu gering. Dies wird vor der Berechnung überprüft. Eine Berechnung findet dann nicht statt. Falls x gleich null ist, fallen erster und letzter innerer Rundschnitt zusammen; es sind keine weiteren inneren Rundschnitte möglich.

Ist x größer null, so ist zu klären, wie viele innere Rundschnitte untergebracht werden sollen. Hier gibt es drei Varianten:

- Der Benutzer hat die Anzahl n_i und die Lage jedes einzelnen inneren Rundschnitts über den Abstand l_{wi} zur Lasteinleitungsfläche vorgegeben.
- 2. Der Benutzer hat die Anzahl n_i der Rundschnitte vorgegeben, nicht jedoch deren Lage.
- 3. Der Benutzer hat weder Anzahl noch Lage der Rundschnitte vorgegeben.

Variante 1 – Anzahl und Lage vorgegeben

Die Lage der inneren Rundschnitte ist klar definiert. Es muss noch kontrolliert werden, ob folgende Vorschriften der EN 1992-1-1 eingehalten sind:

- Der Abstand des ersten inneren Rundschnitts beträgt gemäß [1] Abschnitt 9.4.3 (4) und Bild 9.10 zwischen 0,3 d und 0,5 d.
- Der Abstand der inneren Rundschnitte untereinander überschreitet nicht den zulässigen Höchstabstand gemäß [1] Abschnitt 9.4.3 (1) von 0,75 d.
- Da auch der Abstand I_{wa} des äußeren Rundschnitt feststeht, ist zu überprüfen, ob sich zwischen dem letzten inneren Rundschnitt und dem äußeren Rundschnitt ein Abstand von 1,5 d befindet.

Variante 2 – Anzahl vorgegeben, Lage unbestimmt

Bei vorgegebener Anzahl der inneren Rundschnitte und vorgegebenem Abstand des äußeren Rundschnitts ist zu ermitteln, wie groß der Abstand zwischen den inneren Rundschnitten ist. Dieser Abstand ist konstant für alle Rundschnitte.

$$s_{r,i} = \frac{x}{n_i - 1}$$

Variante 3 – Anzahl und Lage unbestimmt

Die Anzahl der inneren Rundschnitte n_i erhält man hier, indem der verbleibende Abstand x durch den maximalen Abstand s_{r.max} = 0,75 d geteilt wird.

$$n_{\rm i} = \frac{X}{s_{\rm r,max}}$$

Die Anzahl der so ermittelten inneren Rundschnitte ist nur zufallsbedingt ganzzahlig. Deshalb wird die gefundene Anzahl n_i aufgerundet. Nach [1] Abschnitt 9.4.3 (1) muss n_i mindestens den Wert 2 haben. Mit dieser aufgerundeten Anzahl n_i ergibt sich folgender konstante Abstand s_r der inneren Rundschnitte:

$$s_{\rm r} = \frac{x}{n_{\rm i}}$$

Iterative Ermittlung des äußeren Rundschnitts

Ist die Lage des äußeren Rundschnitts nicht benutzerdefiniert vorgegeben, ermittelt RF-STANZ Pro die optimale Lage des äußeren Rundschnitts iterativ.

Die Lage des äußeren Rundschnitts lässt sich aus dem Umfang desselbigen bestimmen. Der äußere Rundschnitt, für den keine Durchstanzbewehrung mehr erforderlich ist, wird nach [1] Gleichung (6.54) ermittelt (siehe Gleichung 2.12).

Die Lage der inneren Rundschnitte ermittelt sich danach wie oben unter den Varianten bei benutzerdefinierter Vorgabe des äußeren Rundschnitts beschrieben.

Der Vollständigkeit halber muss noch erwähnt werden, dass bei benutzerdefinierter Lage der inneren Rundschnitte (Variante 1) natürlich keine Ermittlung der optimalen Lage des äußeren Rundschnitts stattfindet. Er wird dann im Abstand von 1,5 d vom letzten inneren Rundschnitt angeordnet.

Folgender Programmablaufplan zeigt die oben beschriebenen Möglichkeiten mit den drei Varianten.

Programmabbruch

Bild 2.37: Programmablaufplan für Ermittlung der Rundschnitte

Im linken Teil des Ablaufplans findet die Kontrolle der benutzerdefinierten Abstände der inneren Rundschnitte untereinander bzw. zur Lasteinleitungsfläche oder zum äußeren Rundschnitt statt. Im rechten Teil wird die wirtschaftlichste Lage des äußeren Rundschnitts bestimmt.

2 Theoretische Grundlagen

Wenn die Lage der inneren Rundschnitte nicht definiert wurde, geht RF-STANZ Pro nach folgendem Ablaufplan vor.

Bild 2.38: Programmablaufplan für innere Rundschnitte

Aus der Anzahl und den Abständen der inneren Rundschnitte kann nun die erforderliche Durchstanzbewehrung in den einzelnen Rundschnitten bestimmt werden. Zuletzt wird ein äußerer Rundschnitt angelegt und der Nachweis der Querkrafttragfähigkeit $\nu_{Ed,out}$ außerhalb des durchstanzbewehrten Bereichs geführt. Der letzte Teil des Programms läuft wie in folgendem Bild dargestellt ab.

Bild 2.39: Programmablaufplan für Ermittlung der Durchstanzbewehrung

Ist $\nu_{\rm Rd,out} > \nu_{\rm Ed,out}$, so ist die Bedingung nach [1] Gleichung (6.54) nicht erfüllt. Gemäß der Meldung Nr. 64 muss in diesem Fall der definierte Abstand des äußeren Rundschnitts I_{w,out} in Maske 1.5 überprüft werden. Wenn die Lage des äußeren Rundschnitts vom Programm festgelegt wird, ergibt sich das Verhältnis von $\nu_{\rm Rd,out}$ zu $\nu_{\rm Ed,out}$ aus der iterativen Ermittlung des äußeren Rundschnitts wie auf Seite 29 beschrieben.

2.2.1.6 Durchstanznachweis bei beidseitiger Lastwirkung

Liegen an einem Knoten Durchstanzlasten vor, von denen eine die durchstanzende Wirkung zur Plattenoberseite und die andere zur Plattenunterseite hat, so sind beide separat nachzuweisen. Beim Nachweis der Mindestmomente kann die umhüllende Längsbewehrung als der jeweils größte Bewehrungsquerschnitt pro Plattenseite als Lösung ermittelt werden. Im Falle der Durchstanzbewehrung ist dies nur unter Einschränkungen denkbar.

Folgende Abbildung zeigt die Ausbildung des Druckgewölbes bei einem Lastangriff von der Plattenoberseite bzw. der Plattenunterseite.

Bild 2.40: Druckgewölbe bei beidseitiger Lastwirkung

Für die Zugstreben, die sich aus der Belastung an der Plattenoberseite ergeben, wird eine vertikale Durchstanzbewehrung für jeden inneren Rundschnitt bestimmt. Das gleiche geschieht für die inneren Rundschnitte aus der Belastung an der Plattenunterseite.

Unter der Voraussetzung, dass die inneren Rundschnitte für die Belastung an Ober- und Unterseite im gleichen Abstand von der Lasteinleitungsfläche liegen, könnte die dort einzulegende Durchstanzbewehrung verglichen und nur die größere Bewehrung als umhüllende Lösung bestimmt werden. Die inneren Rundschnitte liegen aber nur dann in einem gleichen Abstand von der Lasteinleitungsfläche, wenn die statische Höhe für Ober- und Unterseite identisch ist.

Da nicht davon ausgegangen werden kann, dass die statische Höhe für die Durchstanzlast von oben bzw. unten identisch ist, bestimmt RF-STANZ Pro zunächst eine Hauptlast und eine Nebenlast. Falls aus dem Nachweis der Querkrafttragfähigkeit eine Durchstanzbewehrung nach [1] Abschnitt 6.4.5 erforderlich ist, wird diese nur für die Hauptlast ermittelt. Die Nebenlast ist rein durch die Längsbewehrung abzudecken.

2.2.2 EN 1992-1-1/NA:2013-04 (Nationaler Anhang DIN)

Der deutsche Nationale Anhang (NA) ändert oder ergänzt bestimmte Teile der EN 1992-1-1 [1]. In diesem Kapitel werden die wichtigsten Unterschiede vorgestellt.

2.2.2.1 Nachweis der Mindestmomente nach [1] 6.4.5 (NA.6)

Zur Sicherstellung der Querkrafttragfähigkeit sind die Platten im Stützenbereich für das Mindestmoment m_{Ed} zu bemessen. Nach DIN EN 1992-1-1 [2] dürfen weder der Gesamtbewehrungsgrad noch der Zug- und Druckbewehrungsgrad einen bestimmten Anteil der Querschnittsfläche nicht überschreiten. Daher wird überprüft, ob der Zugbewehrungsgrad von A_{s,max} gemäß Abschnitt 9.2.1.1 (3) eingehalten ist. Für die Druckbewehrung muss ebenfalls der die Bedingung gemäß Abschnitt 9.2.1.1 (3) erfüllt sein. Ist dies nicht der Fall, beendet das Programm die Bemessung mit einer Fehlermeldung.

Nach Abschnitt (NA.6) sollten folgende Mindestmomente je Längeneinheit angesetzt werden:

$$m_{\text{Ed},x} = \eta_x \cdot V_{\text{Ed}} \quad \text{und} \quad m_{\text{Ed},y} = \eta_y \cdot V_{\text{Ed}} \tag{2.13}$$

mit

V_{Ed} : Aufzunehmende Querkraft

 η_x , η_y : Momentenbeiwerte nach Tabelle 2.1 für x- und y-Richtung (siehe Bild 2.41).

Die Mindestmomente sollten mit der in Tabelle NA.6.1.1 angegebenen Breite angesetzt werden:

	Create	1	2	3	4	5	6	
	Spane	η _x			η _y			
Zeile	Lage der Stütze	Zug an der Platten- oberseite	Zug an der Platten- unterseite	Anzu- setzende Breite ^b	Zug an der Platten- oberseite	Zug an der Platten- unterseite	Anzu- setzende Breite ^b	
1	Innenstütze	0,125	0	0,3 l _y	0,125	0	0,3 l _x	
2	Randstütze, Rand "x" ^a	0,25	0	0,15 <i>l</i> y	0,125	0,125	(je m Platten- breite)	
3	Randstütze, Rand "y" ^a	0,125	0,125	(je m Platten- breite)	0,25	0	0,15 / _x	
4	Eckstütze	0,5	0,5	(je m Platten- breite)	0,5	0,5	(je m Platten- breite)	

Tabelle 2.1: Momentenbeiwerte und Verteilungsbreite der Mindestlängsbewehrung (Tabelle NA6.1.1)

Die Anmerkungen in Tabelle 2.1 bedeuten:

- Definition der Ränder und der Stützenabstände I_x und I_y gemäß Bild 2.41
- Breite gemäß Bild 2.41

Die **Plattenoberseite** bezeichnet die der Lasteinleitungsfläche gegenüberliegende Seite der Fläche, die **Plattenunterseite** diejenige Seite, auf der die Lasteinleitungsfläche liegt.

Das folgende Bild 2.41 zeigt die Bereiche für den Ansatz der Mindestbiegemomente $m_{Ed,x}$ und $m_{Ed,y}$.

Bild 2.41: Bereiche für den Ansatz der Mindestbiegemomente m_{Ed.x} und m_{Ed.y} nach NA.6

2.2.2.2 Lasteinleitung und Nachweisschnitte

Der deutsche NA grenzt die Anwendbarkeit der Regelungen des Abschnitt 6.4.1 auf die folgenden Arten von Lasteinleitungsflächen A_{load} ein:

- rechteckig und kreisförmig mit Umfang $u_0 \le 12$ d und Seitenverhältnis $\frac{a}{b} \le 2$ (d: mittlere statische Nutzhöhe des nachzuweisenden Bauteils)
- beliebig, aber sinngemäß wie die oben erwähnten Formen begrenzt

Bei größeren Lasteinleitungsflächen A_{load} sind die Durchstanznachweise auf Teilrundschnitte zu beziehen:

Bild 2.42: Kritischer Rundschnitt bei ausgedehnten Auflagerflächen

Bei Rundstützen mit u₀ > 12 d sind querkraftbeanspruchte Flachdecken nach Abschnitt 6.2 nachzuweisen. Dabei darf in Abschnitt 6.2.2 (1) folgender Vorwert $C_{Rd,c}$ verwendet werden:

$$C_{\rm Rd,c} = \frac{12\,d}{u_0} \cdot \frac{0,18}{\gamma_{\rm c}} \geq \frac{0,15}{\gamma_{\rm c}}$$

Der deutsche NA beinhaltet zudem eine Ergänzung zu den Formen der Nachweisschnitte u₀ um Lasteinleitungsflächen:

Bild 2.43: Ergänzung der kritischen Rundschnitte u₀ zu [1] Bild 6.13
2 Theoretische Grundlagen

Kritische Rundschnitte in einem Abstand kleiner als 2 d sind in der Regel zu berücksichtigen, wenn der konzentrierten Last ein hoher Gegendruck (z. B. Sohldruck auf das Fundament) oder die Auswirkungen einer Last oder einer Auflagerreaktion innerhalb eines Abstands von 2 d vom Rand der Lasteinleitungsfläche entgegenstehen.

Der Abstand a_{crit} des maßgebenden Rundschnitts ist iterativ zu ermitteln. Für Bodenplatten und schlanke Fundamente mit $\lambda > 2,0$ darf vereinfacht ein konstanter Rundschnitt im Abstand 1,0 d angenommen werden.

Die Fundamentschlankheit $\lambda = \frac{a_{\lambda}}{d}$ bezieht sich auf den kürzesten Abstand a_{λ} zwischen Lasteinleitungsfläche und Fundamentrand:

Bild 2.44: Rundschnitt und Abzug Sohlpressung bei Fundamenten nach Bild NA.6.21.1

Innerhalb des iterativ bestimmten Rundschnitts darf der Sohldruck zu 100 % in Abzug gebracht werden. Bei der vereinfachten Festlegung des kritischen Rundschnitts im Abstand 1 d dürfen nur 50 % der Bodenpressungen innerhalb des Rundschnitts entlastend angenommen werden.

2.2.2.3 Ermittlung der Beanspruchung

Zur Berechnung des Lasterhöhungsfaktors β werden im deutschen NA besondere Regelungen eingeführt. Kleinere Werte als 1,10 sind für den Lasterhöhungsfaktor β nicht zulässig. Dieser Grenzwert gilt auch bei der Ermittlung von β unter Berücksichtigung vollplastischer Schubspannungsverteilung.

Bei der Bestimmung des β -Faktors mittels Näherungswerten nach [2] Bild 6.21 ist der Mindestwert 1,10 ebenfalls einzuhalten. Somit ändert sich der Lasterhöhungsfaktor für Innenstützen auf den Wert 1,10.

Berücksichtigt wird der Mindestwert für β auch bei der Bestimmung der Einwirkungen bei Stützenfundamenten nach [2] Gleichung (6.49) und (6.51). Gemäß DIN EN 1992-1-1 ist die resultierende einwirkenden Querkraft V_{Ed,red} aus Gleichung (6.48) in jedem Fall mit mindestens dem Lasterhöhungsfaktor $\beta = 1,10$ zu vergrößern. Für ausmittig belastete Stützenfundamente, bei denen die einwirkende resultierende Querkraft nach Gleichung (6.51) berechnet wird, ist somit der Teil $[1 + k \cdot (M_{Ed}/V_{Ed}) \cdot (u/W)] \ge 1,10$ zu setzen.

Während die Originalausgabe des Eurocode 2 keine Angaben zu der Berechnung von β unter Berücksichtigung des vollplastischen Rundschnitts bei zweiachsiger Ausmitte macht, darf nach DIN EN 1992-1-1 bei Stützen-Deckenknoten mit zweiachsigen Ausmitten die Gleichung (NA.6.39.1) verwendet werden:

$$\beta = 1 + \sqrt{\left(k_x \frac{M_{\text{Ed},x}}{V_{\text{Ed}}} \cdot \frac{u_1}{W_{1,x}}\right)^2 + \left(k_y \frac{M_{\text{Ed},y}}{V_{\text{Ed}}} \cdot \frac{u_1}{W_{1,y}}\right)^2}$$
(2.14)

2.2.2.4 Durchstanzwiderstand ohne Durchstanzbewehrung

Die Berechnung des Durchstanzwiderstandes ohne Durchstanzbewehrung ist im Kapitel 2.2.1.4 auf Seite 23 für EN 1992-1-1 beschrieben. Für die Gleichung (6.47)

$$\nu_{\mathrm{Rd,c}} = C_{\mathrm{Rd,c}} \cdot k \cdot (100 \cdot \rho_{\mathrm{l}} \cdot f_{\mathrm{ck}})^{\frac{1}{3}} + k_{1} \cdot \sigma_{\mathrm{cp}} \ge \left(\nu_{\mathrm{min}} + k_{1} \cdot \sigma_{\mathrm{cp}}\right)$$

sind im deutschen NA folgende Zusatzregeln definiert:

- Flachdecken: Innenstützen bei Flachdecken mit $\frac{u_0}{d} < 4$: $C_{Rd,c} = \frac{0.18}{\gamma_c}$ $C_{Rd,c} = \frac{0.18}{\gamma_c \cdot \left(0.1\frac{u_0}{d} + 0.6\right)}$
- Fundamente und Bodenplatten:
- $\sigma_{\mathsf{I}} \leq \min\left[0.5 \frac{\mathsf{f}_{\mathsf{cd}}}{\mathsf{f}_{\mathsf{yd}}}; 0.02\right]$
- $\nu_{\rm min}$ wie im Abschnitt 6.2.2 (1) geregelt

2.2.2.5 Durchstanzwiderstand mit Durchstanzbewehrung

Der deutsche NA schreibt vor, dass der Nachweis der Maximaltragfähigkeit $\nu_{\rm Rd,max}$ im kritischen Rundschnitt u1 mit Gleichung (NA.6.53.1) zu führen ist. Die Berechnung von v_{Rd.max} ist wie folgt abgeändert:

$$\nu_{\rm Rd,max} = 1.4 \,\nu_{\rm Rd,c} \tag{2.15}$$

 $C_{\text{Rd,c}} = \frac{0.15}{\gamma_c}$

Dabei ist $\nu_{\text{Rd,c}}$ nach Gleichung (6.47) zu ermitteln (siehe Kapitel 2.2.2.4).

Beim Vergleich der Formeln für den maximalen Durchstanzwiderstand $\nu_{\rm Rd,max}$ nach EN 1992-1-1 und deutschem NA wird deutlich, dass sich ein gravierender Unterschied für den Programmablauf ergibt: Bei der Empfehlung der EN 1992-1-1 kann kein Einfluss auf den maximalen Durchstanzwiderstand $\nu_{\rm Rd,max}$ durch eine Erhöhung der Längsbewehrung genommen werden; bei Anwendung des deutschen NA hingegen ist dies möglich.

RF-STANZ Pro verwendet daher spezifische Programmablaufpläne für die Nationalen Anhänge. Für den deutschen NA sieht der Programmteil I-II wie im Bild 2.45 dargestellt aus.

Bild 2.45: Programmablaufplan für Ermittlung der Durchstanzbewehrung nach deutschem NA

Zunächst wird untersucht, ob eine Durchstanzbewehrung laut Benutzervorgabe zulässig ist.

Wenn die Längsbewehrung ausgelegt werden darf, so wird die Längsbewehrung so lange vergrößert, bis entweder der Bemessungswert des maximalen Durchstanzwiderstands $\nu_{\text{Rd,max}}$ ausreichend oder der maximale zulässige Längsbewehrungsgrad von 0,02 gemäß Abschnitt 6.4.4 (1) erreicht ist.

Ist der maximale Durchstanzwiderstand $\nu_{\rm Rd,max}$ zu klein, so endet die Bemessung mit der Meldung, dass eine Erhöhung der Längsbewehrung zu keiner Lösung führt bzw. die definierte Längsbewehrung zu gering ist.

Hinsichtlich der nach Gleichung (6.52) (siehe Kapitel 2.2.1.5, Seite 26) ermittelten Durchstanzbewehrung A_{sw} für Flachdecken findet sich im deutschen NA die Vorschrift, dass die erforderliche Durchstanzbewehrung der ersten beiden Durchstanzreihen mit dem Faktor κ_{sw} zu erhöhen ist:

- Erste Reihe (mit 0,3 d < a $_1 <$ 0,5 d): $\kappa_{
 m sw,1} =$ 2,5
- Zweite Reihe (mit s $_{
 m r}$ < 0,75 d): $\kappa_{
 m sw,2}$ = 1,4

Der deutsche NA regelt noch weitere Punkte im Hinblick auf die Gleichung (6.52):

- Bei unterschiedlichen radialen Abständen der Bewehrungsreihen s_{r,i} ist in Gleichung (6.52) der maximale einzusetzen.
- Für aufgebogene Durchstanzbewehrung ist für das Verhältnis d/s_r in Gleichung (6.52) der Wert 0,53 statt 0,67 anzusetzen. Die aufgebogene Bewehrung darf mit $f_{ywd,ef} = f_{ywd}$ ausgenutzt werden.

Für die Ermittlung der Durchstanzbewehrung von Fundamenten und Bodenplatten beschreibt der deutsche NA ein Verfahren, das grundverschieden zu EN 1992-1-1 ist. Wegen der steileren Neigung der Druckstreben gelten für Fundamente und Bodenplatten folgende Vorgaben:

Die reduzierte einwirkende Querkraft V_{Ed,red} nach Gleichung (6.48) (vgl. Gleichung 2.5, Seite 22) ist von den ersten beiden Bewehrungsreihen neben A_{load} ohne Abzug eines Betontraganteils aufzunehmen. Dabei wird die Bewehrungsmenge A_{sw,1+2} gleichmäßig auf beide Reihen verteilt, die in den Abständen a₁ = 0,3 d und a₂ = 0,8 d anzuordnen sind. Dabei gilt für

- Bügelbewehrung:

$$\beta \cdot V_{\text{Ed,red}} \le V_{\text{Rd,s}} = A_{\text{sw,1+2}} \cdot f_{\text{ywd,ef}}$$
(NA.6.52.1)

- Aufgebogene Bewehrung:

$$\beta \cdot V_{\text{Ed,red}} \leq V_{\text{Rd,s}} = 1,3 \cdot A_{\text{sw},1+2} \cdot f_{\text{vwd}} \cdot \sin \alpha$$
 (NA.6.52.1)

mit

 β : Erhöhungsfaktor für Querkraft nach Gleichung (NA.6.51.1)

A_{sw.1+2}: Durchstanzbewehrung in der ersten und zweiten Reihe

 α : Winkel der geneigten Durchstanzbewehrung zur Plattenebene

Falls bei Fundamenten und Bodenplatten weitere Bewehrungsreihen erforderlich werden, sind je Reihe jeweils 33 % der Bewehrung A_{sw,1+2} nach Gleichung (NA.6.51.1) vorzusehen. Der Abzugswert der Sohlpressung ΔV_{Ed} in Gleichung (6.48) darf dabei mit der Fundamentfläche innerhalb der betrachteten Bewehrungsreihe angesetzt werden.

In jedem Fall sind mindestens zwei Bewehrungsreihen innerhalb des durch den Umfang u_{out} nach Abschnitt 6.4.5 (4) begrenzten Bauteilbereiches zu verlegen.

Der radiale Abstand der ersten Bewehrungsreihe ist bei gedrungenen Fundamenten auf 0,3 d vom Rand der Lasteinleitungsfläche und die Abstände s_r zwischen den ersten drei Bewehrungsreihen auf 0,5 d zu begrenzen.

3 Arbeiten mit RF-STANZ Pro

3.1 **RF-STANZ** Pro starten

Das Zusatzmodul RF-STANZ Pro kann aus dem RFEM-Menü

Zusatzmodule ightarrow RF-STANZ Pro

aufgerufen werden.

Alternativ lässt sich RF-STANZ Pro über den Projekt-Navigator starten.

Im Bild 3.2 wurde das Modul **RF-STANZ Pro** im Navigator als Favorit klassifiziert. Dies kann über einen Rechtsklick auf die Modulbezeichnung und den Kontextmenüeintrag *Favorit* erfolgen. Damit wird das Modul am Beginn der Liste der Zusatzmodule unter dem Unterordner *Favoriten* angezeigt.

3.2 Masken

Sowohl die Eingaben zur Definition der RF-STANZ Pro-Fälle als auch die numerischen Ergebnisausgaben erfolgen in sogenannten Masken.

Die einzelnen Masken lassen sich durch Anklicken eines Eintrags links im RF-STANZ Pro-Navigator oder durch Blättern mit den Tasten [F2] und [F3] bzw. den beiden Schaltflächen ansteuern.

Über dem RF-STANZ-Navigator befindet sich eine Pulldownliste mit den Bemessungsfällen. Mit der Schaltfläche vird die Liste aufgeklappt, in der der gewünschte Bemessungsfall dann durch Anklicken ausgewählt werden kann.

RF-STANZ Pro - [Beispiel]				
Datei Einstellungen Hilfe				
FA2 - Randstütze 🗸 🗸 🗸				
FA1 - Plattenmitte				
FA2 - Randstütze				
Materialien und Flächen				
Zusätzliche Öffnungen				
Längsbewehrung				
Durchstanzknoten				

Bild 3.4: Bemessungsfall auswählen

```
Berechnung
```

Mit der Schaltfläche [Berechnung] wird nach Abschluss aller Eingaben die Bemessung gestartet. Anschließend werden die Ergebnisse in den Ausgabemasken und im RFEM-Arbeitsfenster angezeigt.

Die Schaltfläche [Nat. Anhang] ermöglicht es, die Parameter des Nationalen Anhangs in einem Dialog einzusehen (siehe Bild 3.9, Seite 44).

Abbrechen

OK

Die Schaltfläche [Grafik] aktiviert die Darstellung der Ergebnisse im Arbeitsfenster von RFEM (siehe Kapitel 4.1 ab Seite 74).

[OK] sichert vor dem Verlassen von RF-STANZ Pro die Eingaben und Ergebnisse. [Abbrechen] beendet das Zusatzmodul, ohne die Daten zu speichern.

Die Schaltfläche [?] und die Funktionstaste [F1] aktivieren die Online-Hilfe.

3.3 Eingabe

Die Daten sind in den Eingabemasken 1.1 bis 1.5 zu definieren.

3.3.1 Basisangaben

In Maske 1.1 Basisangaben sind die Bemessungsnorm sowie die Lastfälle, Last- und Ergebniskombinationen festzulegen, die für den Durchstanznachweis angesetzt werden sollen.

RF-STANZ Pro - [Beispiel]		
Datei Einstellungen Hilfe		
FA1 ~	1.1 Basisangaben	
FA1 V Eingabedaten Materialen und Flächen - Zusstälche Offmungen - Längbewehrung - Durchstanzknoten	1.1 Basisangaben Bemessung von Knoten Hr.: 3.4,6-8,14-33 Vorhandene Lastfälle / Kombinationen CD2 LF2 Mutdast 1 CD2 LF2 CF3 LK1 LS5 LF1 + 1.5 LF2 CF4 LK3 LK1 LF1 + D5 LF2 CF6 LK12 LF1 + 0.5 LF2 CF6 CF6 CF1 + D5 LF2 CF6 CF6 CF1 + 0.5 LF3 CF6 CF1 + 0.5 LF3 CF6 CF1 + 0.5 LF2 + 0.5 LF3 CF6 </th <th>Bemessung nach Norm / NA PEN 1992-1-1:2004/AC:2010 DDN:2013 DDN:20</th>	Bemessung nach Norm / NA PEN 1992-1-1:2004/AC:2010 DDN:2013 DDN:20
	Berechnung Nat. Anhang	Grafik OK Abbrechen

Bild 3.5: Maske 1.1 Basisangaben

Bemessung von

X	
\$	

Im Eingabefeld dieses Abschnitts sind die Nummern der nachzuweisenden *Knoten* anzugeben. Falls nur bestimmte Knoten nachgewiesen werden sollen, ist das Kontrollfeld *Alle* zu deaktivieren: Damit wird das Eingabefeld zugänglich, in das die Nummern der relevanten Knoten eingetragen werden können. Die Schaltfläche [Löschen] leert die Liste der voreingestellten Nummern. Über die Schaltfläche [Auswählen] lassen sich die Knoten auch grafisch im RFEM-Arbeitsfenster auswählen.

Mit der Schaltfläche [Knoten nach verschiedenen Kriterien auswählen] ist ein Dialog aufrufbar, der gezielte Einstellungen für die Selektion der zu bemessenden Knoten ermöglicht.

Knoten wählen					
Knoten nach Kriterien v	vählen				
Berücksichtigte Knoten:					
Alle Knoten					
Optionen:					
Nur Knoten aus Flä	chen: 1	3			
Nur Knoten des Stü	Nur Knoten des Stützenanschlusses				
Nur Knoten mit Kno	Nur Knoten mit Knotenlager				
Nur Knoten mit Knotenlasten					
Nur Knoten des Wandanschlusses					
Nur Knoten mit Linienlagern					
Nur Knoten mit Linienlasten					
D	ОК	Abbrechen			

Bild 3.6: Dialog Knoten wählen

In diesem Dialog kann beispielsweise eingestellt werden, dass nur die Knoten einer bestimmten Fläche für den Nachweis infrage kommen. Dies ist hilfreich, wenn im Modell sehr viele Knoten vorhanden sind, die von RF-STANZ Pro als mögliche Durchstanzstellen erkannt werden.

Bemessung nach Norm / NA

Bemessung nach Norm / NA					
EN 1992-1-1:2004/AC:2010 ~					
E DIN:2013	~ 🛅 🕾	7			

Bild 3.7: Norm und Nationaler Anhang für Stahlbetonbemessung

Norm

Bemessung nach Norm / NA		
EN 1992-1-1:2004/AC:20	10 🔽	
EN 1992-1-1:2004/AC:20	110 Europäische	Union
DIN 1045-1:2008-08	Deutschland	
DIN 1045:1988-07	Deutschland	

Es ist anzugeben, nach welcher Norm die Durchstanznachweise erfolgen sollen. In der Liste stehen (momentaner Entwicklungsstand) folgende Stahlbetonnormen zur Auswahl: - EN 1992-1-1:2004/AC:2010 Europäische Union

Nationaler Anhang

Für die Bemessung nach Eurocode (EN 1992-1-1:2004/AC:2010) ist der Nationale Anhang festzulegen, dessen Parameter für die Nachweise angesetzt werden sollen.

CEN	EU
BDS:2011	Bulgarien
BS:2005	Vereinigtes Königreich
CSN:2016	Tschechien
CYS:2009	Zypern
DIN:2015	Deutschland
DK:2013	Dänemark
LST:2011	Litauen
LVS:2014	Lettland
MS:2010	Malaysia
NBN:2010	Belgien
EN:2016	Niederlande
NF:2016	Frankreich
NP:2010	Portugal
H NS:2008	Norwegen
PN:2010	Polen
	Finnland
SingaporeS: 200	8 Singapur
SIST: 2006	Slowenien
SR:2008	Rumänien
2008 STN: 2008	Slowakei
SvenskS:2008	Schweden
E TKP:2009	Weißrussland
UNE:2013	Spanien
UNI:2007	Italien
CNORM:2011	Österreich

Bild 3.8: Nationale Anhänge für EN 1992-1-1

Über die Schaltfläche [Bearbeiten] können die voreingestellten Werte eingesehen werden (siehe Bild 3.9).

3 Arbeiten mit RF-STANZ Pro

1.500 1.150 1.300					
1.500 1.150 1.300					
1.500 1.150 1.300					
1.500 1.150 1.300					
1.150					
1 300					
1.000					
E 3.1 Beton					
C100/115					
0.850					
500.000 MN/m					
1.100					
1.400					
1.500					
1.350					
1.200					
0.100					
enstützen für u o / d					
Beiwert zur Berechnung des Bemessungswertes des Querkraftwiderstandes bei Bodenplatten und Stützenfundamenten					
Beivert zur Berechnung des Benessungsweites des Querkraftwiderstandes für d ≤ 600mm					
Beiwert zur Berechnung des Bemessungswertes des Querkraftwiderstandes für 600 mm < d < 800 mm					
Beiner zur Berechnung des Bemessungsweites des Querkraftwiderstandes für d > 800mm					
1					

Bild 3.9: Dialog Parameter des Nationalen Anhangs

Hier finden sich alle bemessungsrelevanten Beiwerte, die in den Nationalen Anhängen geregelt sind. Sie sind nach den Abschnittnummern des Eurocode aufgelistet.

Falls andere Anwendungsvorgaben für Teilsicherheits- und Abminderungsbeiwerte etc. gelten, können die Parameter angepasst werden. Hierzu ist zunächst über die Schaltfläche 🛅 eine Kopie des aktuellen Nationalen Anhangs zu erzeugen. In diesem benutzerdefinierten Anhang können die Parameter dann geändert werden.

Vorhandene Lastfälle / Kombinationen

In dieser Spalte sind alle Lastfälle, Last- und Ergebniskombinationen aufgelistet, die in RFEM angelegt wurden.

Mit der Schaltfläche lassen sich selektierte Einträge in die Liste *Zu Bemessen* nach rechts übertragen. Die Übergabe kann auch per Doppelklick erfolgen. Die Schaltfläche bergibt die komplette Liste nach rechts.

Die Mehrfachauswahl von Lastfällen ist – wie in Windows üblich – mit gedrückter [Strg]-Taste möglich. So lassen sich mehrere Lastfälle gleichzeitig übertragen.

Falls die Nummer eines Lastfalls rot dargestellt ist, so kann dieser nicht bemessen werden: Hier handelt es sich um einen Lastfall ohne Lastdaten oder um einen Imperfektionslastfall. Bei der Übergabe erscheint eine entsprechende Warnung.

Am Ende der Liste sind mehrere Filteroptionen verfügbar. Sie erleichtern es, die Einträge nach Kategorien sortiert zuzuweisen. Die Schaltflächen sind mit folgenden Funktionen belegt:

⊠ √	Alle Lastfälle in der Liste werden selektiert.
82	Die Auswahl der Lastfälle wird umgekehrt.

Tabelle 3.1: Schaltflächen im Register Vorhandene Lastfälle / Kombinationen

Zu bemessen

In der rechten Spalte werden die zur Bemessung gewählten Lastfälle, Last- und Ergebniskombinationen aufgelistet. Mit doer per Doppelklick lassen sich selektierte Einträge wieder aus der Liste entfernen. Die Schaltfläche de leert die ganze Liste.

Die Lastfälle, Last- und Ergebniskombinationen können folgenden Bemessungssituationen zugewiesen werden:

- Ständig und vorübergehend
- Außergewöhnlich

Diese Einteilung steuert die Teilsicherheitsbeiwerte γ_c und γ_s nach [1] Tabelle 2.1N (siehe Bild 3.9, Seite 44).

Die Bemessungssituation kann über die Liste geändert werden, die mit der Schaltfläche 🖄 am Ende des Eingabefeldes zugänglich ist.

Bild 3.10: Bemessungssituation zuweisen

Auch hier ist eine Mehrfachauswahl mit gedrückter [Strg]-Taste möglich, sodass mehrere Einträge gleichzeitig geändert werden können.

Die Bemessung einer einhüllenden Max/Min-Ergebniskombination verläuft schneller als die aller pauschal übernommenen Lastfälle und Lastkombinationen. Beim Nachweis einer Ergebniskombination sind die im Kapitel 2.1 genannten Hinweise zu beachten.

Kommentar

Kommentar	
Durchstanznachweis nach NA Österreich	*
	~

Bild 3.11: Benutzerdefinierter Kommentar

Dieses Eingabefeld steht für eine benutzerdefinierte Anmerkung zur Verfügung. Der hier eingegebene Kommentar wird auch im Ausdrucksprotokoll im Abschnitt *Basisangaben* für die Eingabedaten aus RF-STANZ Pro angegeben.

3.3.2 Materialien und Flächen

Die Maske 1.2 Materialien und Flächen ist zweigeteilt. Im oberen Abschnitt sind die bemessungsrelevanten Beton- und Stahlgüten aufgelistet. Alle Materialien der Kategorie "Beton", die auch in RFEM für Flächen benutzt werden, sind voreingestellt.

RF-STANZ Pro - [Beispiel]				
Datei Einstellungen Hilfe				
FA1 ~	1.2 Mater	ialien und Flächen		
Eingabedaten	1.2.1 Mat	terialien		
Basisangaben Materialien und Flächen Zusätzliche Öffnungen Längsbewehrung Durchstanzknoten	Material Nr. 2	A	erial B	
		Beton-Festigkeitsklasse	Betonstahl	
		Beton C35/45	B 500 S (B)	

Bild 3.12: Maske 1.2 Materialien und Flächen, Tabelle 1.2.1 Materialien

Durch Klicken in die Zelle einer Beton- oder Stahlgüte erscheint die Schaltfläche I, über die dann in einer Liste die Betonfestigkeitsklasse bzw. Stahlsorte ausgewählt werden, die für die Norm zur Vorfügung stehen:

RF-STANZ Pro - [Beispiel]				
Datei Einstellungen Hilfe				
FA1 ~	1.2 Mater	ialien und Flächen		
Eingabedaten	1.2.1 Ma	terialien		
Basisangaben		A	В	
Materialien und Flächen	Material	Material		
···· Zusätzliche Offnungen	Nr.	Beton-Festigkeitsklasse	Betonstahl	
···· Längsbewehrung	2	Beton C35/45	B 500 S (B)	
Durchstanzknoten		Beton C20/25	^	
		Beton C25/30		
	1.2.2 Fläc	Beton C30/37	-	
		Beton C35/45		
		Beton C40/50	N	
		Beton C45/55		
		Beton C50/60	2	
		Beton C55/67	-	
		Beton C60/75	6	
	Fläche	Beton C70/85	Dicke	

Bild 3.13: Ändern der Betonfestigkeitsklasse

Die Materialien lassen sich auch in Bibliotheken auswählen (siehe folgende Seite).

Im unteren Abschnitt sind die Flächen aufgelistet, die für die Bemessung infrage kommen.

1.2.2 Fläc	chen			
	A	В	С	D
Fläche	Material	Dicke	Dicke	
Nr.	Nr.	Тур	d [cm]	Kommentar
1	1	Konstant	20.00	
2	1	Konstant	18.00	
3	1	Konstant	18.00	
4	1	Konstant	25.00	
5	1	Konstant	20.00	

Bild 3.14: Maske 1.2 Materialien und Flächen, Tabelle 1.2.2 Flächen

Die oben definierten Materialnummern sind den einzelnen Flächen zugeordnet.

In Spalte C sind die Flächendicken von RFEM voreingestellt. Sie können bei Bedarf für die Bemessung mit RF-STANZ Pro geändert werden.

Materialbibliothek

Viele Materialien sind in einer Datenbank hinterlegt. Über die [Bibliothek]-Schaltflächen besteht eine Zugriffmöglichkeit auf die Beton- und Betonstahl-Bibliotheken.

Es erscheint folgender Dialog.

Material aus Bibliothek übernehme	n			×				
Filter	Material zum Übernehmen							
Materialkategorie-Gruppe:	Materialbezeichnung	Norm						
■ Patan	Poten C12/15							
Deton		EN 199	2-1-1.2004/AC.	010				
Material-Kategorie:	Beton C16/20	EN 199	2-1-1:2004/AC:	2010				
	Beton C20/25	🔯 EN 199	2-1-1:2004/AC::	2010				
Deton	Beton C25/30	EN 199	2-1-1:2004/AC:	2010				
Norm-Gruppe:	Beton C30/37	🔯 EN 199	2-1-1:2004/AC:	2010				
	Beton C35/45	🔯 EN 199	2-1-1:2004/AC:	2010				
EN V	Beton C40/50	🔯 EN 199	2-1-1:2004/AC:	2010				
Norm:	Beton C45/55	I EN 199	2-1-1:2004/AC:	2010				
EN 1002 1 1/2004/AC-221	Beton C50/60	I EN 199	2-1-1;2004/AC:	2010				
EN 1992-1-1:2004/AC:201 V	Beton C55/67	EN 100	2-1-1:2004/AC+	2010				
	Beton C60/75	EN 100	2-1-1-2004/AC-	010				
		EN 199	2-1-1:2004/AC:	010				
	Beton C70/85	EN 199	2-1-1:2004/AC:	2010				
	Beton C80/95	EN 199	2-1-1:2004/AC:	2010				
	Beton C90/105	🔯 EN 199	2-1-1:2004/AC::	2010				
	Beton C100/115	🔯 EN 199	2-1-1:2004/AC:2	2010				
Favoritengruppe:	Suchen:]	×				
Materialkennwerte		Beton C35/4	5 EN 1992-1-1:	2004/AC:2010				
Haupt-Kennwerte				_				
Elastizitätsmodul		E	3400.00	kN/cm ²				
Schubmodul	0.	G	1416.67	kN/cm ²				
Poissonsche Zahl (Querdehnzah)	V	0.200	1.51/ 2				
- Spezifisches Gewicht	orah()	γ	25.00	KIN/m ⁻⁹				
Zusätzliche Kennweite	rizarii)	u	1.0000E-05	1/ 0				
Charakteristische Zvlinderdnuckfe	stickeit	fok	3.50	kN/cm ²				
 Charakteristische Würfeldruckfes 	tiakeit	fouk	4 50	kN/cm ²				
Mittelwert der Zylinderdruckfestig	keit	fom	4.30	kN/cm ²				
Mittelwert der zentrischen Zugfes	tigkeit	fctm	0.32	kN/cm ²				
5%-Quantil der zentrischen Zugfe	stigkeit	fetk;0.05	0.22	kN/cm ²				
 95%-Quantil der zentrischen Zug 	estigkeit	fotk;0.95	0.42	kN/cm ²				
Mittelwert des Elastizitätsmoduls		Ecm	3400.00	kN/cm ²				
Grenzdehnung bei zentrischem E	Iruck	δc1	-2.250E-03					
Bruchdehnung		8c1u	-3.500E-03					
Exponent der Parabel	n	2.000						
Grenzdehnung bei zentrischem L	εc2	-0.002						
Granadehnung	εc2u	-3.500E-03						
Bruchdehoung	Grenzdehnung bei zentrischem Druck ε ₆₃ -1.750E-03							
bruchuennung		603u	-3.000E-03					
2			ОК	Abbrechen				

Bild 3.15: Dialog Material aus Bibliothek übernehmen

Im Abschnitt *Filter* sind die normrelevanten Materialien als Vorauswahl so eingestellt, dass keine anderen Kategorien oder Normen zugänglich sind. Die gewünschte Betonfestigkeitsklasse kann in der Liste *Material zum Übernehmen* ausgewählt werden; die Kennwerte lassen sich im unteren Abschnitt überprüfen.

ОК

Mit [OK] oder [-] wird die gewählte Betongüte in die Maske 1.2 von RF-STANZ Pro übergeben.

Das Kapitel 4.3 des RFEM-Handbuchs beschreibt, wie Materialien gefiltert, ergänzt oder neu sortiert werden können.

Jeder Betonfestigkeitsklasse muss eine Bewehrungsstahlsorte zugewiesen werden. Mit der Schaltfläche [Betonstahl-Bibliothek] wird die entsprechende Datenbank aufgerufen.

3

Es erscheint folgender Dialog:

Material aus Bibliothek übernehme	en			×				
Filter	Material zum Übernehmen							
Materialkategorie-Gruppe:	Materialbezeichnung	Norm						
	B 550 S (A)	EN 10	07-1-1·2004/AC·	2010				
Metall	B 550 S (A)							
Material-Kategorie:		EN 19	92-1-1:2004/AC:	2010				
Betonstahl	B 550 S (B)	EN 19	EN 1992-1-1:2004/AC:2010					
	B 550 M (B)	EN 19	92-1-1:2004/AC:.	2010				
Norm-Gruppe:	B 500 S (A)	EN 19	92-1-1:2004/AC:	2010				
EN 🗸	B 500 M (A)	EN 19	92-1-1:2004/AC:	2010				
	B 500 S (B)	EN 19	92-1-1:2004/AC:	2010				
Norm:	B 500 M (B)	EN 19	92-1-1:2004/AC:	2010				
EN 1992-1-1:2004/AC:201 V	B 500 S (C)	EN 19	92-1-1:2004/AC::	2010				
	B 500 M (C)	EN 19	92-1-1:2004/AC:2	2010				
	B 420 S (B)	💿 EN 19	92-1-1:2004/AC::	2010				
	B 420 S (C)	🔯 EN 19	92-1-1:2004/AC::	2010				
	B 450 S (A)	🔟 EN 19	92-1-1:2004/AC::	2010				
	B 450 S (C)	🔯 EN 19	92-1-1:2004/AC:2	2010				
Favoritengruppe:	Suchen:	B 500 S (4	A) EN 1992-1-1:	2004/AC:2010				
Haupt-Kennwerte								
Elastizitätsmodul		E	20000.00	kN/cm ²				
Schubmodul	~	G	7692.31	kN/cm ²				
Poissonsche Zahl (Querdehnzah	0	ν	0.300	1.1.1.2				
Spezifisches Gewicht	nanh)	γ	/8.50	kN/m ³				
El Zusätzliche Kennwerte	inzanij	u	1.0000E-05	1/0				
Elastizitätsmodul		Es	2000.00	kN/cm ²				
Charakteristische Zugfestigkeit		ftk	52.50	kN/cm ²				
Grenzdehnung		εuk	0.025					
Charakteristische Streckgrenze		fyk	50.00	kN/cm ²				
2			OK	Abbrechen				

Bild 3.16: Dialog Material aus Bibliothek übernehmen

Im Abschnitt *Filter* sind ebenfalls die Betonstähle voreingestellt, die nach der gewählten Norm zulässig sind.

3.3.3 Zusätzliche Öffnungen

Alle Öffnungen, die im RFEM-Modell vorliegen, werden automatisch beim Durchstanznachweis erfasst. In Maske *1.3 Zusätzliche Öffnungen* können Aussparungen definiert werden, die auf die Steifigkeit des RFEM-Modells keinen Einfluss haben: Diese Öffnungen werden nur für den Durchstanznachweis berücksichtigt.

Bild 3.17: Maske 1.3 Zusätzliche Öffnungen

Links unterhalb der Tabelle befindet sich eine Grafik, die die Definitionsparameter veranschaulicht. Die interaktive Grafik rechts davon stellt die Fläche dar, für die eine zusätzliche Öffnung angelegt werden soll.

In Spalte A *Bezugsfläche Nr.* ist zunächst die Nummer der Fläche einzutragen, in der die zusätzliche Öffnung vorliegt. Hierzu kann die Schaltfläche 🔜 benutzt und die Fläche grafisch im RFEM-Arbeitsfenster ausgewählt werden. Alternativ kann die Flächennummer direkt eingetragen werden.

Fläche wähle	Einzelauswahl	1.3 Zusätzliche Öffnungen						
	Fläche wählen		A	B				
		Öffnung	Bezugs-	Bezugs-				
		INF.	Fläche Nr.	Knoten Nr.				
	Abbrooken	1						
	Abbrechen	2						
<u> </u>								

Bild 3.18: Schaltfläche 🔜 zur Auswahl der Fläche

Sobald die Fläche in Spalte A eingetragen ist, wird sie in der interaktiven Infografik dargestellt (siehe Bild 3.22).

In die Tabellenspalten C und D ist die Lage der Öffnung in der Fläche zu definieren. Dazu kann in Spalte B die *Bezugsknoten-Nummer* eingeben oder wiederum mit agrafisch im RFEM-Arbeitsfenster bestimmt werden. Als Bezugsknoten kann jeder Knoten der vorliegenden Fläche dienen.

Bild 3.19: Bezugsknoten und Lage

Die Koordinaten des Mittelpunkts der Öffnung sind dann relativ zu diesem Bezugsknoten in den beiden *Lage*-Spalten C und D einzugeben oder mit 🗔 grafisch festzulegen.

Wurde als Bezugsknoten die "0" belassen, dann beziehen sich die Lage-Angaben auf den Abstand in x- und y-Richtung des lokalen Flächen-Koordinatensystems, wie es in der Infografik rechts unten in der Maske 1.3 dargestellt wird.

In Spalte E ist dann anhand der Liste die Form der Öffnung festzulegen.

	A	В	C	D	E	
Öffnung	Bezugs-	Bezugs-	La	ge		
Nr.	Fläche Nr.	Knoten Nr.	x [m]	y [m]	Form	
1	1	1	1.000	2.000	Rechteckig	
2					Rechteckig	
3					Rund	

Bild 3.20: Form der Öffnung

In Abhängigkeit von der vorgegebenen Form kann in den *Abmessungen*-Spalten die Länge und Breite bzw. der Durchmesser der Öffnung eingetragen werden.

Bei einer rechteckigen Öffnung lässt sich zusätzlich eine Drehung definieren (positiv im Uhrzeigersinn, bezogen auf positive x-Achse des Flächen-Koordinatensystems).

Bild 3.21: Rechteckige Öffnung mit Drehung

Sind alle Eigenschaften der zusätzlichen Öffnung definiert, so wird diese in der Grafik der Fläche dargestellt.

Bild 3.22: Grafik der Öffnung

۲

Unterhalb dieser Grafik befindet sich die Schaltfläche [Grafik]. Sie öffnet ein großes Fenster mit der Darstellung der Fläche (siehe Bild 3.23).

Bild 3.23: Grafik der Fläche mit zusätzlicher Öffnung

3.3.4 Längsbewehrung

In Maske 1.4 Längsbewehrung können für jede Fläche Anzahl und Richtung der Bewehrungsbahnen sowie die Betondeckungen festgelegt werden. Es sind separate Vorgaben für Plattenober- und Plattenunterseiten möglich.

Bild 3.24: Maske 1.4 Längsbewehrung

3

3 Arbeiten mit RF-STANZ Pro

Unterhalb der Tabelle verdeutlichen zwei interaktive Grafiken, worauf sich die Angaben oben beziehen. Die linke Grafik zeigt einen Schnitt durch die Platte. Beim Eingeben der Betondeckung einer Lage werden dort die schematisch dargestellten Bewehrungsstäbe selektiert. Die Lage des Schnitts ist in der rechten Grafik dargestellt.

Die für den Nachweis angesetzten Stabdurchmesser der vorhandenen Längsbewehrung wer-den hierbei rein über die Vorgabe der Betondeckung gesteuert. Hieraus wird die statische Höhe d für die Berechnung der Querkrafttragfähigkeit $\nu_{\text{Bd}\,c}$ ermittelt.

3.3.5 Durchstanzknoten

Die Maske 1.5 Durchstanzknoten besteht aus zwei Tabellen und einem Grafikfenster mit der Darstellung des Durchstanzknotens, der in der oberen Tabelle selektiert ist. In der Grafik wird auch die Form des Durchstanzkegels angezeigt.

1.5 Durchs	stanzknoten													
	А	В	С		D	E	F	1	G	Н			J	
Knoten	Bezugs-	Durchstanz-	Durchst	anz-		Stützenabmessungen			Wand	dicke	Übergreifende			
Nr.	Fläche Nr.	Form	Bewehn	ung	a [m]	b [m]	d [m]	t	1 [m] 🛛	t2 [m]	Flächen	Komr	nentar	
2	1	Rund	Vertik	al			0.30				1			
4	1	Rund	Vertik	al			0.30				1			
6	1	Rund	Vertik	al			0.30				1			
8	1	Rund	Vertik	al			0.30				1			
10	1	Rund	Vertik	al			0.30				1			
12	1	Rund 🗾	Vertik	al			0.30				1			
14	1	Rund	Vertik	al			0.30				1			
16	1	Rund	Vertik	al			0.30				1			
18	1	Rund	Vertik	al			0.30				1			
Mehr	fachauswahl-Eir	nstellungen ermöglich	en:							EN .	Alle	\checkmark		\$
Durchsta	nzknoten-Detail	s - Knoten Nr. 12												
🖃 Form				Form		Rund		~	T T		12			
- Breit	te			D		0.30	m				- (🖗 –)		•	
Stütze	nkopfverstärkun	g												
Lage				Lage		Rand								
🕀 Näc	hster Rand			Linie Nr	r.	12								
- R	landabstand			dR		0.500	m							
Bautei				Bauteil		Platte								
Angew	vendete Durchst	anzlast				Einzelkraft aus								
- Rich	ntung der Durch	stanzkraft				Emitteln								
Laster	höhungsfaktor β	3				6.4.3(3) - Vollpl							•	
Durch	stanzbewehrung			Bew.		Vertikal								
Minde	stmomente			Beacht	en									
Runds	chnitte			Definier	ren									
Minde	stabstand der Be	ewehrungsreihen		min s _r		0.05	m							
🖂 Längs	bewehrung													
Que	erschnitt			Definier	ren									
⊡ Verl	egebreite													
⊡ 0	bere Bahnen			Anzahl		2								
	1.Bahn			b 1,oben	1	1.00	m						•	
	2.Bahn			b 2,oben	1	1.00	m		-				-	
	Intere Bahnen			Anzahl		2								
	1.Bahn			b 1,unter	n	1.00	m	¥					۲	Q

Bild 3.25: Maske 1.5 Durchstanzknoten

Die obere Tabelle zeigt eine Übersicht aller Knoten, die in Maske *1.1 Basisangaben* für den Durchstanznachweis ausgewählt wurden. Hier sind auch die wichtigsten Eigenschaften angegeben. Weitere Eigenschaften lassen sich definieren, indem in der oberen Tabelle in die Zeile des relevanten Knotens geklickt wird. In der unteren Tabelle *Durchstanzknoten-Details* können nun in den weißen Eingabefeldern weitere Vorgaben für diesen Knoten erfolgen (siehe Kapitel 3.3.5.2).

.5 Durchs	stanzknoten										
	Α	B	C	D	F	F	G	н		.I.	
Knoten	Bezugs-	Durchstanz-	Durchstanz-	Stüt	zenabmessun	gen	Wand	ldicke	Übergreifende		
Nr.	Fläche Nr.	Form	Bewehrung	a [m]	b [m]	d [m]	t1 [m]	t2 [m]	Flächen	Kommentar	
2	1	Rund	Vertikal			0.30			1		
4	1	Rund	Vertikal			0.30			1		
6	1	Rund	Vertikal			0.30			1		
8	1	Rund	Vertikal			0.30			1		
10	1	Rund	Vertikal			0.30			1		
12	1	Rund	Vertikal			0.30			1		
14	1	Rund	Vertikal			0.30			1		
16	1	Rund	Vertikal			0.30			1		
18	1	Rund	Vertikal			0.30			1		
Mehrfachauswahl-Einstellungen ermöglichen:							73				

Bild 3.26: Haupttabelle mit wichtigsten Eigenschaften der Durchstanzknoten

Spalte A verwaltet die Bezugsflächen der Knoten.

In Spalte B ist die *Durchstanzform* über die Schaltfläche I anhand der Liste festzulegen. Es ist eine rechteckige oder eine runde Form der Lasteinleitungsfläche möglich. Befindet sich im RFEM-Modell am Durchstanzpunkt eine Stütze, so wird deren Querschnittsform und Querschnittsabmessung automatisch übernommen. Es kann hier allerdings auch eine vom RFEM-Modell unabhängige Querschnittsform und Abmessung eingestellt werden.

Bei der Auswahl der rechteckigen Durchstanzform kann in den *Abmessungen*-Spalten die Länge und Breite bzw. der Durchmesser der Stütze eingetragen werden. Bei einer rechteckigen Durchstanzform ist zusätzlich eine Drehung des Durchstanzknotens möglich. Die Eingabe hierzu befindet sich in den *Durchstanzknoten-Details* unter dem Parameter γ .

Die Art der *Durchstanzbewehrung* ist in Spalte C festzulegen. Es stehen verschiedene Möglichkeiten zur Auswahl.

_								
1	.5 Durch	stanzknoten						
		А	В	С	D		E	F
	Knoten	Bezugs-	Durchstanz-	Durchstanz-		Stüt	zenabmessun	gen
	Nr.	Fläche Nr.	Form	Bewehrung	a (n	n]	b [m]	d [m]
	10	1	Rechteckig	Vertikal _		0.40	0.40	
				Keine				
				Vertikal				
				Schräg ^L	3			
				HDB				

Bild 3.27: Auswahl der Durchstanzbewehrung

Bei der Option *Keine* wird beim Nachweis der Platte nur überprüft, ob die Querkrafttragfähigkeit der Platte alleine ausreichend ist. Die Angabe, ob die Durchstanzbewehrung *Vertikal* oder *Schräg* angeordnet wird, hat entscheidenden Einfluss auf den Ablauf des Nachweises.

Bei der Anordnung einer Stützenkopfverstärkung entfällt die Option der schrägen Durchstanzbewehrung.

Mit der Vorgabe *HDB* erfolgt die Bemessung mit der Bemessungssoftware des Dübelleistenherstellers HALFEN. Hierfür ist zunächst die separate Installation dieses Bemessungsprogramms erforderlich. Die Installationsdatei und Hinweise zur Registrierung finden Sie auf der HALFEN-Website.

HDB...

Ist das Bemessungsprogramm installiert, so lässt es sich in Maske 1.5 Durchstanzknoten über die Schaltfläche [HDB] aufrufen. Der Aufruf aus RF-STANZ Pro ist nur für bestimmte Normeinstellungen möglich: Als Nationaler Anhang muss in Maske 1.1 entweder CEN oder DIN ausgewählt werden.

3.3.5.1 Dübelleistensoftware HDB

HDB...

Nach dem Drücken der Schaltfläche [HDB] erscheint der Startdialog von HDB.

Bild 3.29: Startdialog von HDB

Start

Dort ist [Start] zu drücken. Anschließend erscheint folgender Dialog.

Bild 3.30: HDB-Dialog zur Ermittlung der Dübelleisten

Berechnen

Sind die Eingaben in den Registern *Allgemein, Geometrie, Material* und *Statische Lasten* vollständig, lassen sich die Ergebnisse [Berechnen].

3

Nach der Bemessung werden die Ergebnisse als 2D- und 3D-Grafiken dargestellt.

3

Bild 3.31: HDB-Ergebnisse in 2D (Grundriss und Schnitt)

Bild 3.32: HDB-Ergebnisse in 3D

© DLUBAL SOFTWARE 2017

3.3.5.2 Detailtabelle zur Bemessung

In diesem Kapitel werden die Bemessungsvorgaben für den Durchstanznachweis bei punktgelagerten Platten bzw. punktförmig belasteten Fundamenten erläutert. Details bzw. Unterschiede bei den liniengelagerten Wänden (Durchstanzen am Wandende bzw. an der Wandecke) werden im Kapitel 3.3.5.3 behandelt.

In der Tabelle Durchstanzknoten-Details sind die genauen Vorgaben für die Bemessung zu treffen.

Form des Durchstanzknotens

FI Form	Form	Rechteckia	
Breite in v-Richtung	a	0.40	m
Breite in x-Richtung	b	0.40	m
Drehung	γ	0.00	•
Stützenkopfverstärkung			
Lage	Lage	Mitte	
Bauteil	Bauteil	Platte	
Angewendete Durchstanzlast		Einzelkraft aus Stütze / Belas	
Richtung der Durchstanzkraft		Emitteln	
Lasterhöhungsfaktor β		6.4.3(3) - Vollplastische Schu	
Durchstanzbewehrung	Bew.	Keine	
Rundschnitte	Definieren		
Mindestabstand der Bewehrungsreihen	min s _r	0.05	m
🗆 Längsbewehrung	1		
Querschnitt	Definieren		
□ Verlegebreite			
Obere Bahnen	Anzahl	2	
— 1.Bahn	b 1,oben	1.00	m
2.Bahn	b 2,oben	1.00	m
Untere Bahnen	Anzahl	2	
— 1.Bahn	b 1, unten	1.00	m
2.Bahn	b 2, unten	1.00	m
Normalkraft	Ncp	Emitteln	
Abzuziehende Flächenlast			
- Größe	q	0.00	N/mm ²
 Abzugsfähiger Anteil 	Anteil	100.00	%
Max. abziehbare Fläche	Abstand	1.0 d	

Bild 3.33: Detailtabelle

Die Form der Lasteinleitungsfläche kann Rechteckig oder Rund sein.

⊟ Form	Form	Rechteckig	
Breite in y-Richtung	а	0.40	m
Breite in x-Richtung	b	0.40	m
Drehung	γ	0.00	•
			1
E Form	Form	Rund	
Breite	D	0.30	m

Bild 3.34: Form

Stützenkopfverstärkung

In RF-STANZ Pro ist es möglich, bei punktuellen Durchstanzproblemen eine zusätzliche Stützenkopfverstärkung anzuordnen. Hierzu ist das entsprechende Kontrollfeld in den Durchstanzknoten-Details zu aktivieren. Eine Modifikation der Plattendicke im eigentlichen RFEM-Modell ist nicht erforderlich.

🖂 Stützenkopfverstärkung		V	
— Тур	Form	Treppe	
Abstand in x-Richtung	I _{H,x}	0.30	m
Abstand in y-Richtung	IH,y	0.30	m
Höhe	hн	0.30	m

Bild 3.35: Aktivieren der Stützenkopfverstärkung

Als Typ der Stützenkopfverstärkung sind die Formen Treppe oder Konus möglich.

Das Maß $I_{H,x}$ bzw. $I_{H,y}$ beschreibt den Abstand von der Vorderkante der Stütze zur Vorderkante der Stützenkopfverstärkung. Die Höhe h_H entspricht der Höhe der Stützenkopfverstärkung (ohne den Plattenanteil). Die Parameter sind in Bild 3.36 und Bild 3.37 erläutert.

Bild 3.36: Stützenkopfverstärkung gemäß [1] Bild 6.17 – kritischer Rundschnitt im Plattenbereich

Die eingegebenen Abmessungen für die Stützenkopfverstärkung werden automatisch in der interaktiven Infografik im rechten Bereich der Maske 1.5 dargestellt.

Durchstanzknoten-Details - Knoten Nr. 10					
🛱 Form	Form	Rechteckig		^	
Breite in y-Richtung	а	0.40	m		
Breite in x-Richtung	b	0.40	m		
Drehung	γ	0.00	•		
Stützenkopfverstärkung		V			
— Тур	Form	Treppe			
 Abstand in x-Richtung 	I _{H,x}	0.50	m		
 Abstand in y-Richtung 	I _{H,y}	0.50	m		
Höhe	hн	0.20	m		
Lage	Lage	Mitte			
Bauteil	Bauteil	Platte			
Angewendete Durchstanzlast		Einzelkraft aus			
Richtung der Durchstanzkraft		Emitteln			
Lasterhöhungsfaktor ß		6.4.3(3) - Vollpl			
Durchstanzbewehrung	Bew.	Keine			
Rundschnitte	Definieren				
Mindestabstand der Bewehrungsreihen	min s _r	0.05	m		
🗆 Längsbewehrung					
Querschnitt	Definieren				
Verlegebreite					
Obere Bahnen	Anzahl	2			
— 1.Bahn	b 1,oben	1.00	m	¥.	 X X

Bild 3.38: Eingabe der Stützenkopfverstärkung

Bei der Eingabe der Stützenkopfverstärkung ist der Abschnitt 6.4.2 in [1] zu beachten. Im Abschnitt 6.4.2 (9) wird darauf hingewiesen, dass ein Nachweis im Plattenbereich sowie im Bereich der Stützenkopfverstärkung erforderlich wird, wenn $I_H > 2 h_H$ ist (siehe auch Grafik und Abmessungen in Bild 3.38). In diesem Fall wird der Nachweis des Durchstanzens in RF-STANZ Pro im Plattenbereich sowie innerhalb der Stützenkopfverstärkung geführt.

Wird entsprechend der Eingabe $I_h < 2 h_H$, so wird der Nachweis des Durchstanzens lediglich in der Platte außerhalb der Stützenkopfverstärkung geführt. In diesem Fall wird der innere Durchstanzkegel gestrichelt dargestellt (siehe Bild 3.39).

Durchstanzknoten-Details - Knoten Nr. 10					
🖽 Form	Form	Rechteckig		^	and the same second and and a second se
Breite in y-Richtung	а	0.40	m		
Breite in x-Richtung	b	0.40	m		
Drehung	γ	0.00	•		~ 12
🛱 Stützenkopfverstärkung		V			
— Тур	Form	Treppe			
Abstand in x-Richtung	I _{H,x}	0.50	m		\hat{i}
Abstand in y-Richtung	IH,y	0.50	m		
Höhe	hн	0.30	m		10
Lage	Lage	Mitte			
Bauteil	Bauteil	Platte			
Angewendete Durchstanzlast		Einzelkraft aus			
Richtung der Durchstanzkraft		Ermitteln			
Lasterhöhungsfaktor ß		6.4.3(3) - Vollpl			$ \langle \cdot \rangle \langle $
Durchstanzbewehrung	Bew.	Keine			
Rundschnitte	Definieren				
Mindestabstand der Bewehrungsreihen	min s _r	0.05	m		$\sim V_{\rm N}$
🖂 Längsbewehrung					
Querschnitt	Definieren				
Verlegebreite					and the second states and
Obere Bahnen	Anzahl	2			
- 1.Bahn	b1,oben	1.00	m	~	۵ 🕅

Bild 3.39: Eingabe der Stützenkopfverstärkung mit $l_h < 2 h_H$

Lage des Durchstanzknotens

RF-STANZ Pro erkennt die *Lage* des Durchstanzknotens automatisch und ordnet diesen in *Mitte, Rand* oder *Ecke* ein. Abhängig von der modellierten Struktur kann es jedoch vorkommen, dass die Lage durch den Anwender angepasst werden muss. Dies kann ebenfalls über die Durchstanzknoten-Details gesteuert werden

Lage	Lage	Mitte 💌	
Bauteil	Bauteil	Mitte	
Angewendete Durchstanzlast		Rand 😽	
Richtung der Durchstanzkraft		Ecke	

Bild 3.40: Lage

Bauteil

Mit der Auswahl des Bauteils kann gesteuert werden, ob es sich um den Nachweis an einer *Platte* oder einem *Fundament* handelt.

Angewendete Durchstanzlast

Mit dieser Option lässt sich festlegen, wie die Durchstanzlast für den Nachweis ermittelt werden soll. Hierzu stehen grundsätzlich folgende Möglichkeiten zur Auswahl:

Angewendete Durchstanzlast		Einzelkraft aus Stütze / Belastung / 🔽
Richtung der Durchstanzkraft		Einzelkraft aus Stütze / Belastung / Knotenlager
Lasterhöhungsfaktor ß		Geglättete Schubkraft über Umfang des kritischen Rundschnitts
Durchstanzbewehrung	Bew.	Nicht-geglättete Schubkraft über Umfang des kritischen Rundschnitts
Rundschnitte	Definieren	Benutzerdefiniert

Bild 3.41: Angewendete Durchstanzlast

- Einzelkraft aus Stütze / Belastung / Knotenlager Es wird die Normalkraft aus einer Stütze, die Belastung an einem Knoten oder die Lagerkraft eines ausgewählten Knotens für die Bemessung herangezogen.
- Geglättete Schubkraft über den Umfang des kritischen Rundschnitts
 Das Modul ermittelt die Schubkraft in der Platte entlang des kritischen Rundschnitts und bildet hieraus einen gemittelten Verlauf, aus dem die Durchstanzlast ermittelt wird.
- Nicht-geglättete Schubkraft über den Umfang des kritischen Rundschnitts
 Es wird der tatsächliche Schubkraftverlauf entlang des kritischen Rundschnitts verwendet.
 Die Durchstanzlast wird aus dem Maximalwert der Schubspannung ermittelt. In diesem Fall wird der Lasterhöhungsfaktor β mit 1,00 angesetzt.
- Benutzerdefiniert
 Die für den Nachweis angesetzte Durchstanzlast kann direkt vorgegeben werden.

Je nach Art des Durchstanznachweises sind nicht alle Auswahlmöglichkeiten verfügbar. Wird der Nachweis beispielsweise am Wandende oder an einer Wandecke geführt, fehlt die Option *Einzelkraft aus Stütze / Belastung / Knotenlager*.

Die **Richtung der Durchstanzlast** wird in der Regel direkt vom Programm ermittelt. Hierzu kann die Einstellung *Ermitteln* beibehalten werden. Bei Bedarf kann diese allerdings auch in +*Z* bzw. -*Z* gesetzt werden.

Angewendete Durchstanzlast		Einzelkraft aus	
Richtung der Durchstanzkraft		Ermitteln 🚬	
Lasterhöhungsfaktor ß		Ermitteln	
Durchstanzbewehrung	Bew.	+Z 13	
Rundschnitte	Definieren	□.7	

Bild 3.42: Richtung der Durchstanzlast

Lasterhöhungsfaktor β

Angewendete Durchstanzlast		Einzelkraft aus		
Richtung der Durchstanzkraft		Emitteln		
Lasterhöhungsfaktor ß		6.4.3(3) - Voll		
Durchstanzbewehrung	Bew.	6.4.3(3) - Vollplastische Schubspannungsverteiling		
Rundschnitte	Definieren	6.4.3(6) - Konstante Faktoren gemäß Bild 6.21N		
Mindestabstand der Bewehrungsreihen	min s _r	Bestimmt durch Sektorenmodell		
🛱 Längsbewehrung		Definition durch Benutzer		
Querschnitt	Definieren	2		

Bild 3.43: Auswahl des Lasterhöhungsfaktors

Mit dieser Einstellung kann festgelegt werden, ob der Lasterhöhungsfaktor β nach [1] Abschnitt 6.4.3 (3) über die *Vollplastische Schubspannungsverteilung* oder nach Abschnitt 6.4.3 (6) über *Konstante Faktoren* gemäß Bild 6.21N aus [2] ermittelt werden soll. Hierbei ist zu beachten, dass die Näherungswerte gemäß Abschnitt 6.4.3 (6) verwendet werden dürfen, wenn die in diesem Abschnitt beschriebenen Voraussetzungen erfüllt sind (siehe auch Kapitel 2.2.1.3 auf Seite 21).

Als dritte Möglichkeit steht die Ermittlung des Lasterhöhungsfaktors über ein *Sektorenmodell* zur Verfügung.

Alternativ kann der Lasterhöhungsfaktor auch durch den Benutzer vorgegeben werden.

Wird die Durchstanzlast aus der nicht-geglätteten Schubkraft entlang des kritischen Rundschnitts ermittelt, entfällt diese Vorgabe. In diesem Fall wird kein Lasterhöhungsfaktor berücksichtigt, da die Durchstanzlast ohnehin mit dem Maximalwert der Schubspannung am kritischen Rundschnitt aus der FEM-Berechnung in RFEM ermittelt wird.

Weitere Informationen zur Ermittlung des Lasterhöhungsfaktors β finden Sie auch in unserer Knowledge-Base auf der DLUBALWebsite.

Bei der Vorgabe *Definition durch Benutzer* erscheint eine zusätzliche Eingabezeile, in der der Wert des Lasterhöhungsfaktors β frei vorgegeben kann.

	Definition durch Benutzer
Definierter Beiwert β	1.250

Bild 3.44: Benutzerdefinierte Vorgabe des Lasterhöhungsfaktors

Mindestmomente

Um die Mindestmomente nach [1] Abschnitt 6.4.5 (NA.6) bei der Ermittlung der Längsbewehrung zu *Beachten*, ist das Kontrollfeld anzuhaken. Die theoretischen Hintergründe zur Ermittlung der Mindestmomente finden Sie im Kapitel 2.2.2.1 auf Seite 34.

Durchstanzknoten-Details - Knoten Nr. 21								
Stützenkopfverstärkung				~				î –
Lage	Lage	Mitte						
Bauteil	Bauteil	Platte						
Angewendete Durchstanzlast		Einzelkraft aus						
Richtung der Durchstanzkraft		Ermitteln						
Lasterhöhungsfaktor ß		6.4.3(3) - Vollpl						
Durchstanzbewehrung	Bew.	Vertikal		1				
Mindestmomente	Beachten	V		1				
 Voraussetzungen gemäß Abs.6.4.5 (NA.6) Bild NA.6. 	22.1 gegeben.							
Erstes Mindestmoment								
Bewehrungsrichtung	Φ1	0.00	•					
Anzusetzende Breite	b	1.0000	m					
 Beiwert (Lastabgewandte Seite) 	ηab	0.13		1				
Beiwert (Lastzugewandte Seite)	η _{zu}	0.00		1		21		
Zweites Mindestmoment								
Bewehrungsrichtung	Φ1	90.00	•					
Anzusetzende Breite	b	1.0000	m					
 Beiwert (Lastabgewandte Seite) 	ηab	0.13						
Beiwert (Lastzugewandte Seite)	η _{zu}	0.00						
Rundschnitte	Definieren							•
Mindestabstand der Bewehrungsreihen	min s _r	0.0500	m					
🗆 Längsbewehrung				~			۲	d

Bild 3.45: Berücksichtigung der Mindestmomente

Zu beachten ist hierbei, dass das Modul zur automatischen Bestimmung der Mindestmomente die Abmessungen I_x bzw. I_y entsprechend Tabelle NA.6.1.1 benötigt (siehe Tabelle 2.1, Seite 34). Dadurch sind in der Maske *1.1 Basisangaben* mindestens zwei Durchstanzknoten in x- bzw. y-Richtung vorzugeben.

Wird zum Beispiel nur ein Knoten für den Durchstanznachweis ausgewählt und die Option Mindestmomente angewählt, erhält man den Hinweis, wonach die *Voraussetzungen gemäß Abs. 6.4.5 (NA.) Bild NA.6.22.1 nicht erfüllt* sind. In diesem Fall können die Mindestmomente durch den Anwender definiert werden (siehe Bild 3.46).

🕀 Mindestmomente	Beachten	V	
 Voraussetzungen gemäß Abs.6.4.5 (NA.6) Bil 	d NA.6.22.1 sind nicht erfül	t.	0
Mindestmomente definieren	Definieren	V	
Erstes Mindestmoment			
- Bewehrungsrichtung	φ1	0.00	•
Anzusetzende Breite	b	1.0000	m
 Beiwert (Lastabgewandte Seite) 	ηab	0.13	
Beiwert (Lastzugewandte Seite)	η _{zu}	0.00	
Zweites Mindestmoment			
Bewehrungsrichtung	Q1	90.00	•
Anzusetzende Breite	b	1.0000	m
 Beiwert (Lastabgewandte Seite) 	ηab	0.13	
Beiwert (Lastzugewandte Seite)	η _{zu}	0.00	

Bild 3.46: Definition der Mindestmomente

Rundschnitte

RF-STANZ Pro legt den kritischen Rundschnitt, die inneren Rundschnitte für eine ggf. erforderliche Durchstanzbewehrung sowie den äußeren Rundschnitt, für den eine Durchstanzbewehrung nicht mehr erforderlich ist, automatisch an.

Optional können die Rundschnitte auch durch den Benutzer vor der Berechnung vorgegeben werden. Dies kann beispielsweise erforderlich werden, wenn die vom Programm angelegte Durchstanzbewehrung für eine bessere Ausführbarkeit der Bewehrung angepasst werden soll. In diesem Fall ist das Kontrollfeld *Rundschnitte* anzuhaken. Damit öffnen sich weitere Eingabezeilen, in denen die einzelnen Rundschnitte mit den jeweiligen Parametern (*Abstand, Umfang* und *Anzahl* der Rundschnitte) definiert werden können (siehe Bild 3.47).

3 Arbeiten mit RF-STANZ Pro

E

3 Rundschnitte	Definieren	V	
- 🔁 Kritischer Rundschnitt			
- Abstand	l _{w,crit}	0.3800	m
Umfang	Ucrit	4.1876	m
–⊟ Innere Rundschnitte	Definieren	V	
- Anzahl	ni	3	
Abstand zur Lasteinleitungsfläche	Definieren	v	
- 1. Abstand	lw,1	0.0950	m
Radialabstand	Sr	0.1425	m
Äußerer Rundschnitt	Definieren		

Bild 3.47: Manuelle Vorgabe der Rundschnitte

Bei der in Bild 3.47 dargestellten Eingabe wurden die inneren Rundschnitte benutzerdefiniert vorgegeben. Es wurden drei innere Rundschnitte angeordnet. Der Abstand von der Lasteinleitungsfläche soll für das Beispiel $0.5 \cdot d = 0.5 \cdot 0.19 \text{ m} = 0.095 \text{ m}$ betragen. Der radiale Abstand zwischen den einzelnen Bewehrungsreihen wird mit $0.75 \cdot d = 0.1425 \text{ m}$ voreingestellt.

Eine Änderung an den Eingaben wird in der interaktiven Infografik direkt visualisiert.

Bild 3.48: Darstellung der manuell vorgegebenen inneren Rundschnitte

Längsbewehrung

In RF-STANZ Pro wird die erforderliche Längsbewehrung zum Erreichen des erforderlichen Durchstanzwiderstandes $\nu_{\text{Rd,c}}$ automatisch erhöht. Optional kann eine vorhandene Längsbewehrung benutzerdefiniert vorgegeben werden, die z. B. aus der Biegebemessung der Platte im Zusatzmodul RF-BETON Flächen resultiert. Damit kann überprüft werden, ob die daraus resultierende Biegebewehrung für die Querkrafttragfähigkeit ausreichend ist.

Um eine Längsbewehrung zu Definieren, ist zunächst das entsprechende Kontrollfeld anzuhaken.

🗆 Längsbewehrung		
Querschnitt	Definieren	R
	· · · ·	1 cr

Bild 3.49: Querschnitt der Längsbewehrung definieren

Danach kann in den zusätzlich verfügbaren Eingabezeilen der Bewehrungsgehalt in [cm²/m] für die jeweiligen Lagen und Richtungen definiert werden.

🖃 Längsbewehrung			
- Querschnitt	Definieren	V	
Obere Bahnen	Anzahl	2	
- 1.Bahn	vorh a 1,s,oben	31.42	cm ² /m
2.Bahn	vorh a 2,s,oben	31.42	cm ² /m
🖃 Untere Bahnen	Anzahl	2	
— 1.Bahn	vorh a 1,s,unten	0.00	cm ² /m
2.Bahn	vorh a 2, s, unten	0.00	cm ² /m

Bild 3.50: Bewehrungsgehalt vorgeben

3 Arbeiten mit RF-STANZ Pro

Des Weiteren kann die *Verlegebreite* angepasst werden. Standardmäßig ist diese mit 1,00 m voreingestellt. Wichtig hierbei ist, dass eine Überprüfung der erforderlichen Verlegebreiten bzw. Verankerungslängen der Längsbewehrung im Modul **nicht erfolgt**! Die Verankerungslängen und Verlegebreiten der erforderlichen Stahlzulagen sind durch den Anwender festzulegen bzw. zu kontrollieren.

Die Verlegebreiten können im Programm angegeben werden, um dies grafisch in der Ergebnisdarstellung sichtbar zu machen. Dies ist unabhängig davon möglich, ob die Längsbewehrung vom Programm ermittelt oder vom Anwender vorgegeben wird

Verlegebreite		
Obere Bahnen	Anzahl	2
- 1.Bahn	b 1,oben	1.0000 🚍 m
2.Bahn	b 2,oben	1.0000 m
🕀 Untere Bahnen	Anzahl	2
- 1.Bahn	b 1,unten	1.0000 m
2.Bahn	b2.unten	1.0000 m

Bild 3.51: Verlegebreite vorgeben

Normalkraft

Die Normalkraft N_{cp} in der Platte wird in RF-STANZ Pro standardmäßig automatisch ermittelt und für die Berechnung des Durchstanzwiderstandes berücksichtigt. Das Modul setzt hierbei eine entlang des kritischen Rundschnitts gemittelte Normalkraft an.

Soll bei der Ermittlung des Durchstanzwiderstandes eine günstig wirkende Druckkraft oder eine ungünstig wirkende Zugkraft nicht berücksichtigt werden, kann der Anwender anstatt *Ermitteln* auch *Eingeben* wählen.

Normaikrait	Ncp	Ermitteln 🚬	
		Eingeben	
		Ermitteln	
Größe	Nop	0.00	kN/m

Bild 3.52: Verlegebreite vorgeben

Daraufhin erscheint eine neue Eingabezeile, in der die Normalkraft in der Platte z. B. zu null gesetzt werden kann.

Abzuziehende Flächenlast

Die *Details* sehen auch die Möglichkeit vor, eine Flächenlast zu definieren, die vor der Bemessung abgezogen wird. Dies bedeutet, dass die einwirkende Querkraft (z. B. aus der Normalkraft der Stütze) um einen Betrag einer entgegenwirkenden Querkraft reduziert wird. Diese entgegenwirkende Querkraft ist über die *Größe* (Flächenlast z. B. in [kN/m²]), den *Abzugsfähigen Anteil* [%] und die *Maximal abziehbare Fläche* zu definieren.

E	Abzuziehende Flächenlast			
	— Größe	q	0	kN/m ²
	Abzugsfähiger Anteil	Anteil	100.00	%
	Max. abziehbare Fläche	Abstand	1.0 d 💌	
			1.0 d	
			a crit 😽	

Bild 3.53: Abzuziehende Flächenlast bei Fundament

Die maximal abziehbare Fläche wird über den *Abstand* definiert. Wurde das Bauteil als *Platte* definiert, ist nur die Option 1.0 d verfügbar. Bei einem *Fundament* stehen die Einträge 1.0 d und *a_crit* zur Auswahl.

Flächenlast innerhalb des kritischen Rundschnitts

Wird die angewendete Durchstanzlast als *Geglättete Schubkraft über Umfang des kritischen Rund*schnitts oder Nicht-geglättete Schubkraft über Umfang des kritischen Rundschnitts definiert (siehe Bild 3.41, Seite 58), so entfällt die Eingabemöglichkeit einer abzuziehenden Flächenlast.

Mit den beiden genannten Optionen wird die Schubkraft bereits entlang des kritischen Rundschnitts herangezogen, um die Durchstanzlast zu ermitteln. Daher ist das Abziehen einer entgegenwirkenden Flächenlast nicht mehr erforderlich. In diesem Fall wird in den Details die Zeile *Flächenlast innerhalb des kritischen Rundschnitts* angezeigt.

🛱 Flächenlast innerhalb des kritischen Rundschnitts		Eingeben	
Größe	q	18	kN/m ²

Bild 3.54: Flächenlast innerhalb des kritischen Rundschnitts

Die Durchstanzlast wird für den Nachweis von V_{Rd,max,u0} aus der Integration der Schubspannung entlang des kritischen Rundschnitts und der Flächenlast innerhalb des kritischen Rundschnitts ermittelt.

Bei der Option *Eingeben* wird eine Größe der Flächenlast *q* voreingestellt. Hierbei setzt RF-STANZ Pro eine Flächenlast von 1,5 kN/m² (ständig) und 5,0 kN/m² (veränderlich) als Standardeingabe an. Somit ergibt sich mit der Variablen für die Plattendicke und den zugehörigen Teilsicherheitsbeiwerten folgende Gleichung für die voreingestellte Größe der Flächenlast *q*:

$$q = \gamma_{a,k} \cdot (t_{pl} \cdot \gamma_c + 1,50 \text{ kN/m}^2) + \gamma_{a,k} \cdot 5,00 \text{ kN/m}^2$$

In Bild 3.54 wurde eine Lastgröße von 18,0 kN/m² angesetzt. Dieser Wert ergibt sich aus der Flächendicke von 0,24 m mit einer Wichte von 25,0 kN/m³ und den Teilsicherheitsbeiwerten für die ständigen und veränderlichen Lasten ($\gamma_{g,k} = 1,35$; $\gamma_{q,k} = 1,50$). Der aus der Gleichung oben resultierende Wert für q = 17,625 kN/m² wird daraufhin auf die nächste ganze Zahl gerundet und in Maske 1.5 als Größe q = 18,0 kN/m² angesetzt.

Wird als Bauteil die *Platte* gewählt, steht zudem die Option *Ermitteln* zur Verfügung. Hierbei wird die Flächenlast innerhalb des kritischen Rundschnitts gänzlich vom Programm ermittelt. Eine Vorgabe der Flächenlast innerhalb des kritischen Rundschnitts ist nicht erforderlich.

3.3.5.3 Wandecken und Wandenden

RF-STANZ Pro erkennt automatisch Durchstanzpunkte an Wandenden und Wandecken und führt an diesen Knoten ebenfalls die Durchstanznachweise durch.

Im vorherigen Kapitel 3.3.5.2 wurde speziell auf die *Durchstanzknoten-Details* für punktuelle Durchstanzprobleme eingegangen. In diesem Kapitel werden die Unterschiede bei der Nachweisführung für Wandenden und Wandecken herausgestellt.

Form des Durchstanzknotens

RF-STANZ Pro erkennt, ob es sich um einen Durchstanznachweis an einer Wandecke oder einem Wandende handelt. Der Durchstanzpunkt an einer Wandecke wird durch zwei Linien in Wandrichtung 1 und in Wandrichtung 2 definiert.

Durchstanzknoten-Details - Knoten Nr. 3					
🛱 Form	Form	Wandecke		^ 1	
- Wandrichtung 1	Linie Nr.	3			
- Wanddicke 1	t1	0.25	m		
- Wandrichtung 2	Linie Nr.	10	1		
Wanddicke 2	t2	0.25	m		
Lage	Lage	Mitte			
Bauteil	Bauteil	Platte			
Angewendete Durchstanzlast		Geglättete Sch			
Richtung der Durchstanzkraft		Ermitteln			
Lasterhöhungsfaktor ß		6.4.3(6) - Konst			
Durchstanzbewehrung	Bew.	Vertikal			
Mindestmomente	Beachten				
Rundschnitte	Definieren				
Mindestabstand der Bewehrungsreihen	min s _r	0.05	m		
🖯 Längsbewehrung				v	
- Querschnitt	Definieren			, and the second s	
Verlegebreite					
- 🕀 Obere Bahnen	Anzahl	2			
- 1.Bahn	b 1,oben	1.00	m		
2.Bahn	b 2,oben	1.00	m		
🕀 Untere Bahnen	Anzahl	2			
— 1.Bahn	b 1, unten	1.00	m	¥	۲

Bild 3.55: Durchstanzknoten-Details einer Wandecke

Falls die automatische Objekterkennung für das Wandende oder die Wandecke den gewünschten Durchstanzpunkt nicht erkennt, so kann dies durch die manuelle Vorgabe der Liniennummer in Wandrichtung 1 bzw. Wandrichtung 2 korrigiert werden.

🛱 Form	Form	Wandecke	
- Wandrichtung 1	Linie Nr.	3 🚬	
- Wanddicke 1	t1	0.25	sin .
 Wandrichtung 2 	Linie Nr.	10	
Wanddicke 2	t2	0.25	m

Bild 3.56: Auswahl der Linien in Wandrichtung 1 und 2

Angewendete Durchstanzlast

Bei den Nachweisen an einem Wandende oder an einer Wandecke wird standardmäßig die *Nicht-geglättete Schubkraft entlang des kritischen Rundschnitts* angesetzt. Dies bedeutet auch, dass in diesem Fall der Lasterhöhungsfaktor β mit 1,00 angesetzt wird, da für die Ermittlung der Durchstanzlast bereits der Maximalwert der Schubkraft entlang des kritischen Rundschnitts berücksichtigt wurde.

Wird hierzu auf die *Geglättete Schubkraft entlang des kritischen Rundschnitts* umgestellt, so wird auch der Lasterhöhungsfaktor β relevant. Bei der Auswahl des geglätteten Verlaufs der Schubkraft sind entsprechend die Eingabeoptionen für die Ermittlung des Lasterhöhungsfaktors zugänglich.

3.4 Ergebnismasken

3.4.1 Durchstanznachweise

Berechnung

Unmittelbar nach der [Berechnung] erscheint die Maske 2.1 Durchstanznachweise. Sie besteht aus zwei Tabellen und einem interaktivem Grafikfenster.

,											
FA1 ~	2.1 Durchs	stanznachwei	ise								
Eingabedaten A B						:		(D		E	
Basisangaben	Knoten							Nachweis-		Fehlemeldung	
- Materialien und Flächen	Nr.	Nr. Bauteil Belastung			Nachv	veisart		kriterium		Hinweis	
Zusätzliche Offnungen	2	Platte	EK1	Bemessungswer	t der Querkrafttr	agfähigkeit		0.55	51)		
- Längsbewehrung	4	Platte	EK1	Bemessungswer	t der Querkrafttr	agfähigkeit		0.66	51)		
Durchstanzknoten	6	Platte	EK1	Bemessungswer	t der Querkrafttr	agfähigkeit		0.55	51)		
Durchstanznachweise	8	Platte	EK1	Bemessungswer	t der Querkrafttr	agfähigkeit		0.61	51)		
- Erf Durchstanzhaurehrung	10	Platte	EK1	Bemessungswer	t der Querkrafttr	agfähigkeit		0.91	51)		
En. Darchstanzbewennung	12	Platte	EK1	Bemessungswer	t der Querkrafttr	agfahigkeit		0.61	51)		
	14	Platte	EK1	Bemessungswer	t der Querkrafttr	agtahigkeit		0.55	51)		
	10	Platte	EK1	Bemessungswer	t der Querkrafttr	agranigkeit		0.66	51)		
	18	Platte	EKI	Bemessungswer	t der Querkrattin	agranigkeit		0.55	51)		
											1
	Zwischer	nergebnisse -	Knoten Nr. 2								
	🖃 Einwirk	kende Querkra	ft je Flächeneir	heit	VEd	288	kN/m ²	^			
	🖃 Beiw	vert			β	1.56					
	ge	emäß Gleichur	ng (6.39) ermitte	elt							
	🕀 İn	n Richtung x									
	E] Beiwert k nac	ch Tabelle 6.1		kx	0.60					
		Ausmittenp	arallele Abmes	sung	C1	0.300	m				
		Ausmittens	enkrechte Abr	nessung	C2	0.300	m				
	E	Moment im R	undschnittschv	verpunkt um y-Aci	MEd.y.sl	16.06	kNm				
		Moment um die y-Achse Schwerpunkteabstand von Rundschnitt un Einwirkende Querkraft Maßgebende Durchstanzlast			My	-3.84	kNm/m				
					Xsl	0.262	m				
					VEd	75.83	kN				
					VEd	/5.83	KN				
		Umfang des H	kritischen Hund	Ischnitts	U1	1.911	m 2				
		Vviderstandsr Dieleterse u	noment des Ru	naschnitts	VV 1,x	0.58	m-				
		i nichtung y Reiwert kinar	h Tabelle 6 1		k	0.60	1				
		Auemitteon	ar auciie 0.1	8100	ny ca	0.60	m	-			
		Ausmittens	enkrechte Abr	sung	C1	0.300	m	-			
	F	Moment im R	undschnittschv	vemunkt um x-Act	MEdixial	14 55	kNm		<u> </u>		
		- Moment un	n die x-Achse	- ang an inclusion of the	My	.5 25	kNm/m				
		Schwerpur	hkteabstand vo	n Rundschnitt un	Vel	-0.262	m				
	A second s	ipui				75.02	L-N	~			
		 Einwirkend 	le Querkraft		VEd						
		Einwirkend	le Querkraft		VEd	73.03	N/N				

Bild 3.57: Maske 2.1 Durchstanznachweise

Übersichtstabelle

In der oberen Tabelle sind in der ersten Spalte alle *Knoten* aufgelistet, die für den Durchstanznachweis ausgewählt wurden. In der Spalte *Bauteil* wird dokumentiert, ob es sich um einen Nachweis an einer Platte oder einem Fundament handelt. Die Spalte *Belastung* weist den Lastfall, die Lastoder Ergebniskombination mit der maßgebenden Durchstanzlast aus. In der Spalte *Nachweisart* sind die Bezeichnungen der Einzelnachweise aufgelistet, die in den Gesamtnachweis des Knotens einfließen.

Die Spalte *Nachweiskriterium* vermittelt eine quantitative und qualitative Aussage darüber, ob der Nachweis erfolgreich geführt werden konnte. In der letzten Spalte erscheinen für manche Zeilen Nummern von Anmerkungen. Die Anmerkung wird am unteren Rand dieser Maske angezeigt. Sie kommentiert das Ergebnis der Bemessung, wie z. B. die Meldung *51*) in Bild 3.66, wonach der Durchstanzwiderstand $\nu_{Rd,c}$ einer Platte gemäß [1] 6.4.4 (2) ausreichend ist.

Die Übersichtstabelle ist mit der interaktiven Grafik verbunden: Beim Setzen des Cursors in die Zeile eines Knotens wird dieser mitsamt Fläche im Grafikfenster rechts unten dargestellt.

Zwischenergebnisse

Die untere Tabelle zeigt alle Zwischenschritte des Nachweises an, der in der Übersichtstabelle oben selektiert ist. Sie beginnt mit der Ermittlung der maßgebenden Beanspruchung. Danach schließt sich die Bestimmung der Beanspruchbarkeit an. Im Nachweis werden die beiden Größen gegenübergestellt und aus ihnen das Nachweiskriterium bestimmt. Die Tabelle ist zur Informationsverdichtung hierarchisch aufgebaut. Die Endergebnisse einer Berechnung befinden sich auf einer höheren Darstellungsebene als die jeweiligen Zwischenergebnisse. Die tieferen Darstellungsebenen sind durch Anklicken der [+]-Zeichen erreichbar.

Grafische Auswahl

+

In den Tabellen besteht eine grafische Auswahlmöglichkeit über die Schaltfläche 🔊. Sie befindet sich unterhalb der Übersichtstabelle rechts.

	A	B	C	D	E
noten				Nachweis-	Fehlermeldung
Nr.	Bauteil	Belastung	Nachweisart	kriterium	Hinweis
2	Platte	LK2	Bemessungswert der Querkrafttragfähigkeit	0.81	51)
4	Platte	LK2	Bemessungswert der Querkrafttragfähigkeit	1.00	50)
6	Platte	LK2	Bemessungswert der Querkrafttragfähigkeit	0.81	51)
8	Platte	LK2	Bemessungswert der Querkrafttragfähigkeit	1.00	50)
10	Platte	LK2	Bemessungswert der Querkrafttragfähigkeit	1.40	
			Querkrafttragfähigkeit Druckstrebe	1.00	
			Querkrafttragfähigkeit Zugstrebe	1.00	
			Querkrafttragfähigkeit äußerer Rundschnitt	1.00	
12	Platte	LK2	Bemessungswert der Querkrafttragfähigkeit	1.00	50)
14	Platte	LK2	Bemessungswert der Querkrafttragfähigkeit	0.81	51)

🚹 Bild 3.58: Schaltfläche 🚺

Beim Anklicken der Schaltfläche erscheint das RFEM-Arbeitsfenster. Im Modell kann nun einer der Durchstanzknoten, die für den Nachweis bestimmt wurden, ausgewählt werden. Danach erfolgt die Rückkehr in das Modul RF-STANZ Pro. In der Tabelle werden nun die Ergebnisse dieses Knotens angezeigt.

Ausgabe der Zwischenergebnisse

Der Zwischenergebnisse der Durchstanznachweise sind in verschiedenen Ebenen angeordnet. Die oberste Darstellungsebene sieht wie folgt aus:

Zwischenergebnisse - Knoten Nr. 10								
Einwirkende Querkraft je Flächeneinheit	VEd	1050	kN/m²					
Durchstanzwiderstand ohne Durchstanzbewehrung								
■ Nachweis								

Bild 3.59: Zwischenergebnisse – Hauptpunkte

Die darunterliegenden Ebenen sind in folgenden Bildern dargestellt.

🚍 Einwirkende Querkraft je Flächeneinheit	VEd	1050	kN/m ²
Beiwert	β	1.10	
gemäß Gleichung (6.39) ermittelt			
🗇 In Richtung x			
— ■ Beiwert k nach Tabelle 6.1	k _x	0.60	
— ■ Moment im Rundschnittschwerpunkt um y-Acl	MEd.y.sl	0.00	kNm
 Maßgebende Durchstanzlast 	VEd	382.47	kN
Umfang des kritischen Rundschnitts	U1	2.765	m
Widerstandsmoment des Rundschnitts	W _{1,x}	0.77	m ²
🖃 In Richtung y			
→ Beiwert k nach Tabelle 6.1	ky	0.60	
Moment im Rundschnittschwerpunkt um x-Acl	M _{Ed,x,sl}	0.00	kNm
Maßgebende Durchstanzlast	VEd	382.47	kN
Umfang des kritischen Rundschnitts	U1	2.765	m
Widerstandsmoment des Rundschnitts	W _{1.y}	0.77	m ²
- 🔁 Einwirkende Querkraft	VEd	382.47	kN
- Lastfall	LF	LK2	
Lastabgewandte Fläche		Oberseite	
Umfang des kritischen Rundschnitts	U1	2.765	m
 Abstand zur Lasteinleitungsfläche 	lw,1	0.290	m
 Länge der Lasteinleitungsfläche 	a1	0.30	cm
Breite der Lasteinleitungsfläche	b1	0.30	cm
Mittlere statische Nutzhöhe	d	14.50	cm
 Stat. Nutzhöhe 1. Bahn 	d1	14.00	cm
Stat. Nutzhöhe 2. Bahn	d ₂	15.00	cm
Durchstanzwiderstand ohne Durchstanzbewehrung			
∃ Nachweis			

Bild 3.60: Unterpunkte für Einwirkende Querkraft je Flächeneinheit

3 Arbeiten mit RF-STANZ Pro

🗆 Finuidean de Ouedent in Biehenninheit	[]	1050	In NI /m 2
	VEd	1050	KIN/M ²
Durchstanzwiderstand ohne Durchstanzbewehrung			
 Grunddurchstanzwiderstand nach (6.47) 	VRd,c,calc,1	750	kN/m²
 Landesspezifischer Wert 	C _{Rd,c}	0.12	
 Beiwert (Einfluss der Bauteilhöhe) 	k	2.00	
Mittlere statische Nutzhöhe			
 Stat. Nutzhöhe 1. Bahn 	d1	15.00	cm
 Stat. Nutzhöhe 2. Bahn 	d2	14.00	cm
Mittlere statische Nutzhöhe	d	14.50	cm
 Mittlerer Längsbewehrungsgrad 			
— → Bewehrungsgrad der 1. Bahn	ρ1	0.010	
— → Bewehrungsgrad der 2. Bahn	ρ2	0.011	
Mittlerer Längsbewehrungsgrad	ρ	0.010	
Maximal zulässiger Bewehrungsgrad	ρmax	0.020	
 Charakteristische Zylinderfestigkeit 	fok	30.00	N/mm ²
Landesspezifischer Wert	k1	0.10	
Spannung im Beton	σcp	5	kN/m ²
Membrankraft	Nop	-0.81	kN/m
Mindestdurchstanzwiderstand nach (6.47)	VRd,c,calc,2	543	kN/m ²
 Landesspezifischer Wert 	Vmin	542	kN/m²
Landesspezifischer Wert	k1	0.10	
Spannung im Beton	σcp	5	kN/m ²
Membrankraft	Nop	-0.81	kN/m
Maßgebender Durchstanzwiderstand	V Rd,c	750	kN/m ²
Nachweis			

Bild 3.61: Unterpunkte für Durchstanzwiderstand ohne Durchstanzbewehrung

Einwirkende Querkraft je Flächeneinheit v Ed 1050								
Durchstanzwiderstand ohne Durchstanzbewehrung								
Nachweis								
Einwirkende Querkraft je Flächeneinheit	VEd	1050	kN/m²					
Maßgebender Durchstanzwiderstand	V Rd,c	750	kN/m ²					
Nachweiskriterium	Kriterium	1.40						
	Einwirkende Querkraft je Flächeneinheit Durchstanzwiderstand ohne Durchstanzbewehrung Nachweis Einwirkende Querkraft je Flächeneinheit Maßgebender Durchstanzwiderstand Nachweiskriterium	Einwirkende Querkraft je Rächeneinheit v Ed Durchstanzwiderstand ohne Durchstanzbewehrung Nachweis Einwirkende Querkraft je Rächeneinheit v Ed Maßgebender Durchstanzwiderstand v Rd,c Nachweiskriterium Kriterium	Einwirkende Querkraft je Flächeneinheit v Ed 1050 Durchstanzwiderstand ohne Durchstanzbewehrung Nachweis Einwirkende Querkraft je Flächeneinheit v Ed 1050 Maßgebender Durchstanzwiderstand v Rd,c 750 Nachweiskriterium 1.40					

Bild 3.62: Unterpunkte für Nachweis

Export des kritischen Rundschnitts

In der Ergebnismaske 2.1 befindet sich zusätzlich eine Schaltfläche zum [Exportieren] des kritischen Rundschnitts in das RFEM-Modell.

Zunächst ist in der Tabelle der Durchstanznachweise ie relevante Zeile mit einem Mausklick auszuwählen. Wird dann die Schaltfläche **[1]** betätigt, erzeugt RF-STANZ Pro Linien im RFEM-Modell am Verlauf des generierten kritischen Rundschnitts. Diese können dann z. B. genutzt werden, um Flächenschnittgrößen aus den RFEM-Ergebnissen grafisch auszuwerten.

3.4.2 Erforderliche Durchstanzbewehrung

Das Erscheinungsbild der zweiten Ausgabemaske ist von der Bewehrungsart abhängig.

2.2 Erforde	rliche Durch	stanzbewehru	ng						
	А	B	1	С		D	F	F	1.L
Knoten						Bewehrungs-		Fehlemeldung	1
Nr.	Bauteil	Belastung	E	lewehrungsart		fläche	Einheit	Hinweis	
			Plattenunterseite in	Richtung ϕ_2		0.00	cm ² /m		1
10	Platte	LK2	Plattenoberseite in	Richtung ø1		14.72	cm ² /m		1
			Plattenoberseite in	Richtung ø2		14.72	cm ² /m		
			Plattenunterseite in	Richtung q1		0.00	cm ² /m		
			Plattenunterseite in	Richtung ϕ_2		0.00	cm ² /m		
			 Rundschnitt 			7.81	cm ²		
			2. Rundschnitt			4.37	cm ²		
			Rundschnitt			3.12	cm ²		
			 Rundschnitt 			3.12	cm ²		
12	Platte	LK2	Plattenoberseite in	Richtung ø1		6.26	cm ² /m		\sim
Zwisshaa		Kastas Na. 40							\$
Zwischen	ergebnisse -	Knoten Nr. 10					·	•	
	enkraturagranig			-	0.010				
	denicher Lang	sbewenrungsgi d das 1. Daha	80	ρ	0.010				
	wehrungsgra	d der 7. Bahn		P1	0.010				
M	avimal zuläggidi	a dei 2. Dann Iar Rewehnings	orad	P 2	0.01				
- Eff F	Bewehning	for bewernunge	gibb	erf as	14.72	2 cm ² /m			
- Frf I	änge der Bev	vehning		le le	14.72	2 m			
Erf. \	Verlegebreite o	ler Bewehrung		br	1 170) m			
								10 00000000000000000000000000000000000	
								۲	X

Bild 3.63: Maske 2.2 Erforderliche Durchstanzbewehrung

Diese Maske besteht ebenfalls aus einer Übersichtstabelle, einer Detailtabelle und einem interaktiven Grafikfenster.

Übersichtstabelle

In der ersten Spalte sind alle *Knoten* aufgelistet, für die der Durchstanznachweis geführt wurde. Mit der Schaltfläche ist auch hier die grafische Auswahl eines Knotens im RFEM-Modell möglich. Die Spalte *Bauteil* beschreibt wiederrum, ob es sich um eine Fundamentplatte, Platte oder Stützenkopfverstärkung handelt. Die Spalte *Belastung* weist den Lastfall, die Last- oder Ergebniskombination mit der maßgebenden Durchstanzlast aus.

In Spalte *Bewehrungsart* sind die Bezeichnungen der einzelnen Bewehrungen aufgelistet. Die Anzahl der Bewehrungsbahnen wurde in Maske 1.4 Längsbewehrung festgelegt. Wurden dort zwei Bewehrungsbahnen an der Plattenoberseite vorgegeben, so finden sich in den ersten beiden Zellen die Angaben zur Längsbewehrung an Plattenoberseite für die Bewehrungsrichtungen φ_1 und φ_2 gemäß Maske 1.4. Bei drei Bewehrungsbahnen folgt noch eine Zelle für die Bewehrungsrichtung an Plattenunterseite. Die nächsten Zellen enthalten dann analog die Angaben zur Längsbewehrung an Plattenunterseite. Die Ausgabe für jeden Knoten endet dann mit den Angaben zur Durchstanzbewehrung für die einzelnen Rundschnitte.

Die Spalte *Bewehrungsfläche* enthält die Stahlquerschnitte der einzulegenden Bewehrungen. Die *Einheit* ist in Spalte E angegeben. Die erforderliche Längsbewehrung wird immer auf einen Meter Plattenbreite bezogen ausgegeben; die Durchstanzbewehrung hingegen stellt eine absolute Größe dar.

In der letzten Spalte finden sich wieder Nummern von Anmerkungen, die in der Fußleiste erläutert sind.

Zwischenergebnisse

Die Detailtabelle zeigt alle Zwischenschritte der Bewehrungsermittlung an, die für den oben selektierten Knoten gelten.

Die folgenden Bilder zeigen verschiedene Darstellungsebenen der Zwischenergebnisse.

Zwischenergebnisse - Knoten Nr. 10		
Für Querkrafttragfähigkeit		
Erforderlicher Längsbewehrungsgrad	ρ	0.010
Bewehrungsgrad der 1. Bahn	ρ1	0.010
Erf. Längsbewehrung	erfa _{s,1}	14.72 cm ² /m
Stat. Nutzhöhe 1. Bahn	d 1	15.00 cm
Bewehrungsgrad der 2. Bahn	ρ2	0.011
 Erf. Längsbewehrung 	erfa _{s,2}	14.72 cm ² /m
Stat. Nutzhöhe 2. Bahn	d2	14.00 cm
Maximal zulässiger Bewehrungsgrad	ρmax	0.020
Erf. Bewehrung	enfa _s	14.72 cm ² /m
Erf. Länge der Bewehrung	lr.	1.478 m
Erf. Verlegebreite der Bewehrung	br	1.170 m

Bild 3.64: Unterpunkte für Querkrafttragfähigkeit und Längsbewehrung

🛱 Bestimmen der Anzahl der inneren Rundschnitte					
 Abstand erstes und letztes inneres Rundschnitts 	Xin	0.17	m		
 Max. zulässiger Abstand innere Rundschnitte 	max s _r	0.14	m		
 Rech. erf. Anzahl Abstände 	N dis,calc	1.22			
 Gewählte Anzahl Abstände 	Ndis	2			
Gewählte Anzahl Rundschnitte	n in	3			
□ Lage des 1. Rundschnitts					
 Umfang des Rundschnitts 	u	1.52	m		
Abstand zur Lasteinleitungsfläche	1 _w	0.09	m		
🛱 Einwirkende Querkraft je Flächeneinheit	VEd	1541	kN/m ²		
- 🔁 Beiwert	β	1.10			
 gemäß Gleichung (6.39) ermittelt 					
In Richtung y					
- 🔁 Einwirkende Querkraft	VEd	394.95	kN		
— Lastfall	LF	LK2			
Lastabgewandte Fläche		Oberseite			
🖃 Umfang des kritischen Rundschnitts	U1	1.524	m		
Abstand zur Lasteinleitungsfläche	lw,1	0.093	m		
Mittlere statische Nutzhöhe	d	18.50	cm		
 Stat. Nutzhöhe 1. Bahn 	d 1	19.00	cm		
 Stat. Nutzhöhe 2. Bahn 	d2	18.00	cm		
Durchstanzwiderstand ohne Durchstanzbewehrung					
—	VRd,c,calc,1	608	kN/m ²		
Mindestdurchstanzwiderstand nach (6.47)	VRd,c,calc,2	543	kN/m ²		
Maßgebender Durchstanzwiderstand	V Rd,c	608	kN/m ²		
Statisch erforderliche Durchstanzbewehrung					
 Mittlere statische Nutzhöhe 	d	18.50	cm		
Radialabstand Bewehrungsreihen	Sr	0.08	m		
 Wirksame Bewehrungsfestigkeit 	f _{ywd,ef}	296.25	N/mm ²		
⊕ Umfang des kritischen Rundschnitts	U1	3.267	m		
Gewählter Erhöhungsfaktor	ksw	2.50			
Statische erforderliche Durchstanzbewehrung	A _{sw,stat}	4.08	cm ²		
Mindestdurchstanzbewehrung					
Mindestquerschnitt je Bügelschenkel	Asw,min,Bügel	0.13	cm ²		
→ Mindestanzahl Bügelschenkel					
→ Mindestdurchstanzbewehrung	A _{sw,min}	0.75	cm ²		
Maximaler Durchmesser Bügelschenkel	max Φ_{sw}	0.01	cm		
🖂 Maßgebende Durchstanzbewehrung A _{sw}					
 Statische erforderliche Durchstanzbewehrung 	A _{sw,stat}	4.08	cm ²		
Mindestdurchstanzbewehrung	A _{sw,min}	0.75	cm ²		
Maßgebende Durchstanzbewehrung	Asw	4.08	cm ²		

Bild 3.65: Unterpunkte für *Rundschnitte*

Grafikfenster

Das Grafikfenster veranschaulicht die Ergebnisse der Zeile, die in der oberen Tabelle selektiert ist.

Bild 3.66: Grafikfenster für erforderliche Durchstanzbewehrung

Anhand der Darstellung der Fläche und des aktuellen Durchstanzknotens lassen sich die Ergebnisse eines Knotens in der Tabelle leicht finden. Ebenso lässt sich die aktuelle Bewehrung überprüfen, denn sie wird schematisch mit ihrer Bewehrungsrichtung dargestellt.

Unterhalb dieser Grafik befindet sich die Schaltfläche
Sie öffnet ein großes Fenster mit der Darstellung der Fläche (siehe Bild 3.23, Seite 51).

Grafik

Im unteren Bereich der Ergebnismasken befindet sich die Schaltfläche [Grafik]. Sie ermöglicht den Wechsel in das Arbeitsfenster von RFEM, um die Ergebnisse grafisch am Modell zu überprüfen (siehe Kapitel 4.1 ab Seite 74). Die diversen Ergebnisarten können im *Ergebnisse*-Navigator für die Darstellung ausgewählt werden.

3.5 Pulldownmenüs

Die Pulldownmenüs enthalten wichtige Funktionen zum Verwalten der RF-STANZ Pro-Fälle.

3.5.1 Datei

...dient der Handhabung der RF-STANZ Pro-Fälle.

Datei	Einstellungen	Hilfe	
I	Neuer Fall		Strg+N
	Fall umbenennen		
1	Fall kopieren		
1	Fall löschen		
5	Speichern		Strg+S
9	Speichern unter		
	Tabellen exportier	en	

Bild 3.67: Pulldownmenü Datei

Neuer Fall

Der Menüpunkt ermöglicht es, einen neuen Bemessungsfall anzulegen.

Neuer RF-S	TANZ Pro-Fall			×
Nr. 2	Bezeichnung Randstützen			~
٢		C	OK	Abbrechen

In diesem Dialog ist eine (noch freie) *Nummer* für den neuen Bemessungsfall anzugeben. Die *Bezeichnung* erleichtert die Auswahl in der Lastfall-Liste.

Nach [OK] erscheint die RF-STANZ Pro-Maske 1.1 Basisangaben zur Eingabe der Bemessungsdaten.

Fall umbenennen

In einem Dialog kann die Bezeichnung des aktuellen RF-STANZ Pro-Falls geändert werden.

RF-STANZ Pro-Fall umbenennen	×
Nr. Bezeichnung 2 Randstützen	~
(\mathfrak{D})	OK Abbrechen

Bild 3.69: Dialog RF-STANZ Pro-Fall umbenennen

Es kann nicht nur eine andere *Bezeichnung*, sondern auch eine andere *Nummer* für den Bemessungsfall festgelegt werden.

Bild 3.68: Dialog Neuer RF-STANZ Pro-Fall
Fall kopieren

Die Eingabedaten des aktuellen Bemessungsfalls können kopiert werden.

×
~
chen

Bild 3.70: Dialog RF-STANZ Pro-Fall kopieren

Es ist die Nummer und ggf. eine Bezeichnung für den neuen Fall festzulegen

Fall löschen

Bemessungsfälle lassen sich wieder löschen.

F	all lösch	nen X
	Vorhand	ene Fälle
	Nr.	Bezeichnung
	1	
	2	Randstützen
	3	Kopie der Randstützen
	٢	OK Abbrechen

Bild 3.71: Fall löschen

Der Bemessungsfall kann in der Liste *Vorhandene Fälle* ausgewählt werden. Mit [OK] erfolgt der Löschvorgang.

3.5.2 Einstellungen

Über das Menü **Einstellungen** \rightarrow **Einheiten und Dezimalstellen** ist der Dialog zum Anpassen der Einheiten und Nachkommastellen zugänglich

Einheiten und Dezimalstel	en							×
Programm / Modul	Eingab Koord	edaten inaten	Ergebnisse			Längsbewehrung		
RF-BE TON Stutzen RF-STANZ RF-STANZ Pro RF-HOLZ Pro RF-HOLZ AWC RF-HOLZ AWC RF-HOLZ NBR RF-HOLZ NBR RF-HOLZ SANS RF-HOLZ SANS RF-OYNAM RF-DYNAM Pro RF-JOINTS RF-STIRNPL RF-STRNPL RF-RAHMECK Pro RF-RAHMECK Pro RF-STABDUBEL RF-HOHLPROF RF-FUND RF-FUND RF-FUND RF-STABIL RF-OEFORM	Länge Winke	n: d:		Einheit m ~ ° ~	DezStellen	Betondeckungen: Verlegebreiten:	Einheit cm ~ m ~	DezStellen
	Platter Offnur Räche Runds Runds	etrie ndicken: ngen/Kno en-Öffnun schnitte: schnitt-Ab	ten: gen: stände: ichen:	cm > m > m^2 > m > m > m^2 >		Belastungen Kräfte: Beiwerte (rotationssym.): Mindestmomente: Beiwerte Mindestmoment: Spannungen: Anteile Flächenlasten:	kN ~ MN ~ kNm/m ~ mm ~ N/mm^2 ~ % ~	2 ÷ 2 ÷ 2 ÷ 2 ÷ 2 ÷
RF-BEWEG RF-BEWEG Richen RF-SOLLIN RF-GLAS RF-LAMINATE	•						OK	Abbrechen

Einheiten und Dezimalstelle	en							×
Programm / Modul		Eingabedaten	Ergebnisse					
RF-BETON Stäbe	^	Einwirkungen				Durchstanzbewehrung		
- RF-STANZ				Einheit	DezStellen		Einheit	DezStellen
RF-STANZ Pro		Schubspannur	ngen:	kN/m^2 \checkmark	0 ≑	Bewehrungen:	cm^2 \	- 2 ÷
- RF-HOLZ AWC		Rundschnitt-Kr	äfte:	kN/m \sim	2 🌲	Bewehrungsgrade:	% \	✓ 2÷
RF-HOLZ CSA						Bewehrungsneigungen:	• \	✓ 2 ÷
- RF-HOLZ SANS								
RF-HOLZ		Flächenbeweh	nrung			Diverses		
		Stabdurchmes	ser:	mm 🗸	0 🖨	Faktoren und Beiwerte:	%	2
RF-JOINTS		Flächenbeweh	rungen:	cm^2/m \sim	2 🌩	Prozent. Druckzonenhöhe:	%	2
RF-STIRNPL		Bewehrungsgr	ade:	\sim	3 🚔	Nachweiskriterien:	%	2
···· RF-RAHMECK Pro						Widerstandsmomente:	m^2 \	- 2≑
RF-HOHLPROF								
- RF-STABIL								
RF-DEFORM								
RF-IMP								
- RF-GLAS								
RF-LAMINATE	~							
۵ 👔	œ						ОК	Abbrechen

4 Ergebnisauswertung

4.1 Darstellung der Ergebnisse

Die tabellarische Auswertung der Ergebnisse aus der Berechnung wurde im Kapitel 3.4 beschrieben.

Für die grafische Auswertung kann auch das RFEM-Arbeitsfenster genutzt werden: Klicken Sie die Schaltfläche [Grafik] an, um das Bemessungsmodul zu verlassen. Im Arbeitsfenster von RFEM werden nun die Bewehrungen, Bemessungsschnittgrößen und Nachweiskriterien dargestellt. Der RF-STANZ Pro-Fall ist in der Liste der Lastfälle eingestellt.

RF-STANZ Pro FA1	Ŧ
LF1	
LF2	
LK1 - 1.3RF-STANZ Pro FA1	
LK2 - 1.35*LF1 + 1.5*LF2	
LK3 - LF1	
LK4 - LF1 + LF2	
LK5 - LF1	
LK6 - LF1 + 0.5*LF2	
LK7 - LF1	
LK8 - LF1 + 0.3*LF2	
EK1 - GZT (STR/GEO)	
EK2 - GZG - Charakteristisch	
EK3 - GZG - Häufig	
EK4 - GZG - Quasi-ständig	
RF-STANZ Pro FA1	

Grafik

Bild 4.1: RF-STANZ Pro-Fall in Liste der Lastfälle

Der Ergebnisse-Navigator ist an die Ausgabemöglichkeiten von RF-STANZ Pro angepasst.

Bild 4.2: Ergebnisse-Navigator für RF-STANZ Pro

Damit lassen sich die verschiedenen Ergebnisarten am RFEM-Modell visualisieren (siehe folgende Bilder).

Δ

Bild 4.3: Durchstanzlasten

Im Bild 4.3 wurde zur besseren Lesbarkeit der Durchstanzlasten die Darstellungsart der Stützen (Stäbe) auf *Konturen* geändert. Dies kann im *Zeigen*-Navigator eingestellt werden.

Bild 4.4: Einstellung im Zeigen-Navigator von RFEM

Das Bild 4.5 zeigt den Verlauf der Querkraft im kritischen Rundschnitt.

Bild 4.5: Darstellung der Querkraft im kritischen Rundschnitt

In dieser Darstellung wird der Querkraftverlauf im kritischen Rundschnitt für alle Knoten qualitativ dargestellt, die im aktuellen Bemessungsfall untersucht wurden.

Δ

Wird die Durchstanzlast aus der Einzelkraft einer Stütze, einer Einzellast oder einem Knotenlager für den Nachweis herangezogen, wird der Querkraftverlauf wie im Bild 4.5 dargestellt angezeigt. Wird bei der Ermittlung der Durchstanzlast in Maske 1.5 die Option *Geglättete Schubkraft über Umfang des kritischen Rundschnitts* ausgewählt, so wird diese geglättete Schubkraft auch entsprechend in der Grafik geglättet dargestellt.

Im Register *Faktoren* des Ergebnispanels von RF-STANZ Pro kann der *Anzeigefaktor* für die Schnitte eingestellt werden. Damit lässt sich die Größe der dargestellten Verläufe steuern.

Über das Register *Filter* kann die Anzahl der dargestellten Durchstanzknoten angepasst werden. Hierzu sind im Feld *Verläufe darstellen von Knoten Nr.* die darzustellenden Knoten einzutragen. Mit dem Betätigen der Schaltfläche in diese Vorgabe im Grafikfenster umgesetzt.

Bild 4.6: Filterfunktion für Durchstanzknoten

Im Farbpanel stehen die üblichen Steuerungsmöglichkeiten zur Verfügung. Sie sind im Kapitel 3.4.6 des RFEM-Handbuchs beschrieben.

Auch für RF-STANZ Pro können die Möglichkeiten der *Sichtbarkeiten* aus RFEM genutzt werden (siehe RFEM-Handbuch, Kapitel 9.9.1), um Flächen für die Auswertung zu filtern.

Λ

Bild 4.8: Durchstanzbewehrung a_{sw}

Bild 4.9: Detaildarstellung mit Werten

Wie in Bild 4.9 dargestellt, können die Ergebnisverläufe auch in Form von Isolinien dargestellt werden. Hierzu muss in den Zeigen-Navigator gewechselt werden. Unter dem Eintrag **Ergebnisse** \rightarrow **Darstellungsart** \rightarrow **Isolinien** kann zusätzlich die Option *Ergebniswerte* aktiviert werden. Dadurch ist grafisch ersichtlich, in welchem inneren Rundschnitt welcher Absolutwert an Durchstanzbewehrung vorzusehen ist.

Wurde bei Stützenanschlüssen die Option "Stützenkopfverstärkung" aktiviert, so besteht im *Ergeb*nisse-Navigator von RF-STANZ Pro eine zusätzliche Option zur Darstellung der Ergebnisse für die Bemessung an der Stützenkopfverstärkung. Die Ergebnisse für die Platte und die Stützenkopfverstärkung können gleichzeitig oder getrennt voneinander dargestellt werden.

4.2 Ausdrucken

4.2.1 Ausdruckprotokoll

Für den Ausdruck der numerischen Ergebnisse muss zunächst RF-STANZ Pro mit [OK] beendet werden. In RFEM kann dann das Ausdruckprotokoll aufgerufen werden.

4

Bild 4.11: Ausdruckprotokoll in RFEM

Für die Daten des Moduls RF-STANZ Pro wird – wie in RFEM – ein Ausdruckprotokoll generiert, das mit Grafiken und Erläuterungen ergänzt werden kann. Die Selektion im Ausdruckprotokoll steuert, welche Daten des Bemessungsmoduls schließlich im Ausdruck erscheinen.

Das Ausdruckprotokoll ist im RFEM-Handbuch beschrieben. Das Kapitel 10.1.3.5 *Selektion der Zusatzmodul-Daten* erläutert, wie die Ein- und Ausgabedaten von Zusatzmodulen für den Ausdruck aufbereitet werden können.

Bei großen Systemen mit vielen Bemessungsfällen trägt die Aufteilung der Daten in mehrere Ausdruckprotokolle zur Übersichtlichkeit bei.

Bild 4.12: Ausdruckprotokoll mit RF-STANZ Pro-Daten

4.2.2 Grafikausdruck

In RFEM kann jedes Bild, das im Arbeitsfenster angezeigt wird, in das Ausdruckprotokoll übergeben oder direkt zum Drucker geleitet werden. Somit lassen sich auch die am RFEM-Modell gezeigten Bewehrungen und Bemessungsschnittgrößen für den Ausdruck aufbereiten.

Die aktuelle Grafik der Ausnutzungsgrade kann gedruckt werden über das Menü

Datei ightarrow Drucken

oder die entsprechende Schaltfläche in der Symbolleiste.

💰 R	FEM 5.0	7.05 x32 - [De	cke auf St	ützen*]		
:4⊳	<u>D</u> atei	Bearbeite <u>n</u>	<u>A</u> nsicht	<u>E</u> infügen	Be <u>r</u> echnung	Er <u>q</u> ebnisse
:	23	a 🗐	🙀 🗟 I	501	ş ୠ 🚱 😫	
9	- 97 1	% - ¶ -	Grafik	drucken	🚈 🔛 🐂	- 🖬 - 📬 -
Proje	kt-Navig	ator - Daten				μ×

Bild 4.13: Schaltfläche [Grafik drucken] in RFEM-Symbolleiste

Das Drucken von Grafiken ist im Kapitel 10.2 des RFEM-Handbuchs beschrieben.

Wird die Grafik in das Ausdruckprotokoll gedruckt, kann sie wie gewohnt per Drag-and-Drop an eine andere Stelle geschoben werden.

Eine Platte nach dem Beispiel 4: *Punktförmig gestützte Platte* aus [3] wird schrittweise untersucht. Im Buch des deutschen Betonvereins wird die Berechnung nach DIN EN 1992-1-1 vorgestellt, die auch hier nachvollzogen werden soll.

5.1 System

System und Abmessungen

Bild 5.1: System gemäß Beispiel 4 in [3]

Die Achsabstände I_v und I_z betragen jeweils 6,75 m.

Das Modell wird in RFEM erstellt. Die Dicke der Platte beträgt 240 mm. Der Querschnitt aller Stützen ist quadratisch mit 450 mm Seitenlänge. Für alle Bauteile wird generell Beton C35/45 gewählt.

Bei der Modellierung werden die Außenkanten der Deckenplatte bündig mit den Außenkanten der Stützen eingegeben. Somit ergibt sich die Randstreifenbreite von 22,5 cm.

5

Bild 5.4: Modellausschnitt mit Achsabständen

Lagerung

Die eingegebene Deckenplatte wird punktuell mit Knotenlagern gestützt. Bei der Definition der Knotenlager ist die *Elastische Lagerung als Stütze in Z* zu aktivieren.

Knotenlager beart	peiten		×
Lager Nr. 1 Lagerachsensyste Image: Global X,Y,Z Benutzerdefinit Gedreht	Auf Knoten Nr. 3,4,6-8,14-33		Y X X Z
Elastische Lageru	ng als	**	
Lagerbedingunger	Federkonstante	Nichtlinearität	
✓ ux:	Cu,X : 0.000 ≑▶ [kN/m]	Keine	~ 🖾
🗹 uγ:	Cu,Y : 0.000 ≑ ▶ [kN/m]	Keine	~ 🔯
uz:	Cu,Z : 0.000 + [kN/m]	Keine	~ 🖾
Einspannung			
φχ:	C _{φ,X} : 0.000 ≑ ▶ [kNm/rad]	Keine	~ 🔤
🔲 φγ:	C _{φ,Y} : 0.000 ≑ [kNm/rad]	Keine	~ 📨
✓ φZ:	C _{φ.Z} : 0.000 ↓ [kNm/rad]	Keine	~ 🔯
7777. 👗 💄			
Kommentar			
	~		
2	1		OK Abbrechen

Bild 5.5: Knotenlager als Stütze in Z

Über die Schaltfläche 💽 ist der Dialog zur Ermittlung der Lagerfedern zugänglich. Dort können die markierten Vorgaben eingegeben werden.

Stütze bearbeiten		
Stützenparameter		X
Modellierung der Stützung als:	Elastische Flächenbettung Elastische Knotenlagerung Knotenlager mit angepasstem FE-Netz	Y X X
Stützenkopf:		
Rechteckig	b: 450.0 ↔ [mm] h: 450.0 ↔ [mm]	
Kreisrund	D : [mm]	
Stützendrehung:	β: 0.00 ()	
Stützenguerschnitt:		
Stützenquerschnitt	: identisch mit dem Stützenkopfquerschnit	
0	📖 📨 🙃	
Stützenmaterial:		
1 Beton C35/45	DIN EN 1992-1-1/NA:2011-01 🗸 🛍 🎦 🐷	
Stützenhöhe:	H: 3.000 🗭 [m]	Lagerfedern infolge Stütze
Lagerungsart		
am Kopfpunkt:	Teileingespannt	Cu y
Lagerungsart		Cu.z 2295000.00 [kN/m]
am Fußpunkt:	O Teileingespannt ♀▶ [%]	C _m x 147842.000 [kNm/rad]
	Eingespannt	C _m y 147842.000 [klym/rad]
Schubsteifigkeit akt	ivieren	ç
۵.00		OK Abbrechen

Bild 5.6: Dialog Stütze bearbeiten zur Ermittlung der Lagerfedern

Materialien

 Beton:
 C35/45

 Betonstahl:
 B 500 S (B)

Betondeckung

Infolge der Expositionsklasse XC1 wird eine Betondeckung $c_{nom} = 20$ mm erforderlich. Daraus ergeben sich die Verlegemaße von

 $c_{v,B\ddot{u}} = 20 \text{ mm} \text{ für die Bügel und}$

 $c_{v,l} = 30 \text{ mm}$ für die Längsbewehrung.

5.2 Belastung

Für die vereinfachte Ermittlung der Auflagerlasten wird in [3] eine Vollbelastung angesetzt:

 $e_d = 14,67 \text{ kN/m}^2$

Zur Eingabe der Vollbelastung wird in RFEM ein Lastfall angelegt, für den das Eigengewicht des Modells (Deckenplatte) deaktiviert wird.

Lastfälle und Kombinationen bearbeiten X												
Lastfälle Lastkombinationen Ergebniskombinationen	Lastfälle Lastkombinationen Ergebniskombinationen											
Vorhandene Lastfälle	LF Nr. Lastfall-Bezeichnung	Anwenden										
G LF1 Vollbelastung e_d	1 Vollbelastung e_d ~											
	Basis Berechnungsparameter											
	Einwirkungskategorie											
	G Ständige Lasten V											
	Eigengewicht											
	Aktiv											
	Faktor in Richtung:											
	X: • [-]											
< >	Kommentar											
	L											
		OK Abbrechen										

Bild 5.7: Anlegen eines Lastfalls ohne Berücksichtigung des Eigengewichts

Die Last von 14,67 kN/m² wird im Lastfall 1 als Flächenlast aufgebracht.

Für die Nachweise im Modul RF-STANZ Pro wird lediglich der Lastfall LF 1 angesetzt. Last- und Ergebniskombinationen werden für dieses Beispiel nicht betrachtet.

5.3 Lagerkräfte

Für die Berücksichtigung der Durchlaufwirkung wird in [3] angnommen, dass sich die jeweilige Lasteinzugsfläche in Richtung der Durchlaufwirkung von 50 % auf 60 % der jeweiligen Spannweite in Richtung des Deckenrandes erhöht. Die Lasteinzugsfläche der Rand- und Eckstützen reduziert sich entsprechend.

Die in [3] ermittelten Lagerkräfte können folgender Tabelle entnommen werden.

Stützentyp	Achse	Lasteinzugsfläche [m²]	$V_{Ed}[kN]$
Innenstütze	C/3	6,75 · 6,75 = 45,56	668
1. Innenstütze	B/3, C/2	$1,1 \cdot 6,75 \cdot 6,75 = 50,12$	735
Innere Eckstütze	B/2	$1,1 \cdot 6,75 \cdot 1,1 \cdot 6,75 = 55,13$	809
Randstütze	A/3, C/1	$(0, 4 \cdot 6, 75 + 0, 225) \cdot 6, 75 = 19, 75$	290
1. Randstütze	A/2, B/1	$(0,\!4\cdot 6,\!75+0,\!225)\cdot 1,\!1\cdot 6,\!75=21,\!72$	319
Eckstütze	A/1	$(0,\!4\cdot6,\!75+0,\!225)^2 \ = \ 8,\!56$	126

Tabelle 5.1: Lagerkräfte nach [3]

Die in [3] errechneten Lagerkräfte weichen aufgrund des vereinfachten Ansatzes der Lasteinzugsflächen leicht von den in RFEM ermittelten Lagerkräften ab.

Bild 5.8: RFEM-Lagerkraft in Achse B/2

Da in diesem Beispiel die Ergebnisse aus RF-STANZ Pro mit der Referenzlösung verglichen werden sollen, wird im Folgenden mit der Lagerkraft in Achse B2 nach [3] von 809 kN gerechnet. Diese Kraft kann in Maske 1.5 als Durchstanzlast definiert werden.

5.4 Eingaben in RF-STANZ Pro

Ist das Modell vollständig eingegeben, wird das Zusatzmodul RF-STANZ Pro aus der Familie der Stahlbetonmodule ausgewählt und gestartet (siehe Bild 3.1, Seite 40).

In Maske 1.1 Basisangaben wird zunächst der Knoten in der Achse B/2 zur Bemessung ausgewählt. In der Datei für das Beispiel ist dies der Knoten **20** (je nachdem, wie die Flächen modelliert wurden, kann sich eine andere Knotennummerierung ergeben; dies spielt für die weitere Dokumentation aber keine Rolle).

Entsprechend dem Beispiel 4 in [3] wird die Bemessungsnorm **EN 1992-1-1:2004/AC:2010** mit dem Nationalen Anhang **DIN:2015** festgelegt.

.1 Basisangaben					
Bemessung von			Bemessung nach No	orm / NA	
Knoten Nr.:			EN 1992-1-1:20	04/A1:2014 ~	
20 🚯 🚯	×	Alle	DIN:2015	V 🔭 🐼 🔻	
		7			
Vornandene Lästralle / Kombinationen		G LF1	Vollbelastung e_d	Ständig und vorüberge	
	~				
	~				
	22				
	4				
	~				
	~				
					NU NU NOV
					Nachweis von Flächen gegen Durchstanzen
					nach EC 2
					6
Alle (0)				2v 80	TITTELLILL
Rommentar		1	7		
					in the second se
·					111

Bild 5.9: Maske 1.1 Basisangaben

Als Belastung wird der Lastfall **LF1** für die Bemessung ausgewählt. Dies kann entweder durch Doppelklicken des Lastfalls oder durch Selektieren über einfaches Anklicken und Übertragen mit der Schaltfläche erfolgen

In Maske 1.2 Materialien und Flächen sind keine weiteren Eingaben erforderlich. Die Betonfestigkeit (Beton C35/45) und die Dicke (24 cm) der Stahlbetonfläche werden aus der RFEM-Topologie übernommen. Hier ist lediglich zu überprüfen, ob der Betonstahl B 500 S (B) voreingestellt ist.

Auch die Maske 1.3 Zusätzliche Öffnungen erfordert keine Eingaben, da im Beispiel keine weiteren Öffnungen in der Deckenplatte vorgesehen sind.

In Maske 1.4 Längsbewehrung ist die Lage der Längsbewehrung festzulegen. Die Betondeckung d_1 und d_2 für die Ober- und Unterseite der Betonfläche wird mit $d_1 = 4,00$ cm und $d_2 = 6,00$ cm definiert.

Bild 5.10: Maske 1.4 Längsbewehrung

Die Maske 1.5 Durchstanzknoten verwaltet die Details des Durchstanzknotens. Die Durchstanzform wird rechteckig definiert, die Stützenabmessungen mit **a** = 0,45 m und **b** = 0,45 m festgelegt.

Die gegebenenfalls erforderliche Durchstanzbewehrung soll als **vertikale Bügelbewehrung** ausgeführt werden.

	A	В	С	D	E	F	G	H		J
Knoten	Bezugs-	Durchstanz-	Durchstanz-	Stüt	zenabmessun	gen	Wand	ldicke	Übergreifende	
Nr.	Fläche Nr.	Form	Bewehrung	a [m]	b [m]	d [m]	t1 [m]	t2 [m]	Flächen	Kommentar
20	1	Rechteckig	Vertikal	0.45	0.45				1	
Mehr	fachauswahl-Ein	stellungen ermöglich	ien:					Zn I	Alle	1

Bild 5.11: Maske 1.5 Durchstanzknoten (obere Tabelle)

Für diesen Durchstanzknoten können die *Durchstanzknoten-Details* im unteren Bereich der Maske festgelegt werden (siehe Bild 5.12).

Wie im Kapitel 5.3 beschrieben, weicht die mit RFEM ermittelte Lagerkraft vom Wert des Referenzbeispiels ab. Um die Ergebnisse von RF-STANZ Pro mit den Ergebnissen nach [3] vergleichen zu können, wird die *Angewendete Durchstanzlast* **Benutzerdefiniert** mit **V**_{Ed} = **809 kN** (Lagerkraft in Achse B/2) festgelegt. Des Weiteren wird eine vorhandene *Längsbewehrung* von \emptyset 20 - 10 angenommen. Der daraus resultierende vorhandene Bewehrungsgehalt von **31**,**42 cm²/m** auf der Oberseite (für beide Richtungen) ist ebenfalls bei den Details zu definieren.

🕀 Form	Form	Rechteckig	
Breite in y-Richtung	a	0.45	m
Breite in x-Richtung	b	0.45	m
Drehung	γ	0.00	•
Stützenkopfverstärkung			
Lage	Lage	Mitte	
Bauteil	Bauteil	Platte	
Angewendete Durchstanzlast		Benutzerdefinie	
— Größe		809.00	kN
Richtung der Durchstanzkraft		Ermitteln	
Lasterhöhungsfaktor ß		6.4.3(3) - Vollpl	
Durchstanzbewehrung	Bew.	Vertikal	
Mindestmomente	Beachten		
Rundschnitte	Definieren		
Mindestabstand der Bewehrungsreihen	min s _r	0.05	m
🖂 Längsbewehrung		^	
- 🖂 Querschnitt	Definieren	V	
- 🗇 Obere Bahnen	Anzahl	2	
— 1.Bahn	vorh a 1,s,oben	31.42	cm ² /m
2.Bahn	vorh a 2,s,oben	31.42	cm ² /m
Untere Bahnen	Anzahl	2	
— 1.Bahn	vorh a 1, s, unten	0.00	cm ² /m
2.Bahn	vorh a 2, s, unten	0.00	cm ² /m
Verlegebreite der Bewehrung	Definieren		
Normalkraft	Ncp	Ermitteln	
🛱 Abzuziehende Flächenlast	-		
- Größe	q	0.000	MN/m ²
Abzugsfähiger Anteil	Anteil	100.00	%
Max. abziehbare Fläche	Abstand	1.0 d	

Bild 5.12: Durchstanzknoten-Details für Knoten 20

Berechnung

Sobald die Vorgaben in den Eingabedaten vollständig definiert sind, kann die [Berechnung] mit einem Klick auf die entsprechende Schaltfläche gestartet werden.

5.5 Ergebnisse

5.5.1 Durchstanznachweise

RF-STANZ Pro

Im Bild 5.13 sind die Ergebnisse der Maske 2.1 Durchstanznachweise dargestellt.

2.1 Durch	stanznachwei	ie .			
	A	В	C	D	E
Knoten				Nachweis-	Fehlemeldung
Nr.	Bauteil	Belastung	Nachweisart	kriterium	Hinweis
20	Platte	LF1	Bemessungswert der Querkrafttragfähigkeit	1.20	
			Querkrafttragfähigkeit Druckstrebe	0.86	
			Querkrafttragfähigkeit Zugstrebe	1.00	
			Querkrafttragfähigkeit äußerer Rundschnitt	1.00	
					5

Der Querkrafttragfähigkeit $\nu_{Rd,c}$ ohne Durchstanzbewehrung ist überschritten. Das Nachweiskriterium wird entsprechend mit 1,20 dokumentiert. In diesem Fall ist somit zusätzlich zu der bereits in Maske 1.5 definierten Längsbewehrung von 31,42 cm²/m eine vertikale Durchstanzbewehrung vorzusehen.

Die diversen Zwischenergebnisse für den Durchstanzknoten sind im Bild 5.14 dargestellt.

Dluba

Einwirkende Querkraft je Flächeneinheit	VEd	1.118	MN/m ²
Beiwert	ß	1.10	······
gemäß Gleichung (6.39) ermittelt			
🖃 In Richtung x			
Beiwert k nach Tabelle 6.1	kx.	0.60	
Ausmittenparallele Abmessung	C1	0.450	m
Ausmittensenkrechte Abmessung	62	0.450	m
Editation Bundschnittschwerpunkt um v-Act	Medival	-24.46	k.Nm
Moment um die v-Achse	M	-24.46	kNm/m
Schwemunkteabstand von Bundschnitt un	N-I	0.000	m
Einwirkende Querkraft	Vez	0.000	L-N
Maßgebende Durchstanzlagt	Vea	005.00	L N
Imabgebende Durchstanziast	VEO	4 100	m
Widerstandemoment des Rundschnitts	Wein	4.100	m2
	** 1,X	1.70	
Primert k pach Tabella 6 1	le.	0.00	
	ку	0.60	
Ausmittenparaliele Abmessurig	C1	0.450	m
Ausmittensenkrechte Abmessung	C2	0.450	m
Moment im Rundschnittschwerpunkt um x-Aci	MEd,x,sl	24.43	KINM
Moment um die x-Achse	Mx	24.43	kNm/m
Schwerpunkteabstand von Rundschnitt un	y sl	0.000	m
Einwirkende Querkraft	VEd	809.00	kN
Maßgebende Durchstanzlast	VEd	809.00	kN
Umfang des kritischen Rundschnitts	U1	4.188	m
Widerstandsmoment des Rundschnitts	W _{1.y}	1.76	m ²
Einwirkende Querkraft	VEd	809.00	kN
— Lastfall	LF	LF1	
Lastabgewandte Fläche		Oberseite	
Umfang des kritischen Rundschnitts	U1	4.188	m
Abstand zur Lasteinleitungsfläche	lw,1	0.380	m
 Länge der Lasteinleitungsfläche 	a1	0.45	cm
Breite der Lasteinleitungsfläche	b1	0.45	cm
Mittlere statische Nutzhöhe	d	19.00	cm
 Stat. Nutzhöhe 1. Bahn 	d1	18.00	cm
Stat. Nutzhöhe 2. Bahn	d2	20.00	cm
Durchstanzwiderstand ohne Durchstanzbewehrung			
Grunddurchstanzwiderstand nach (6.47)	VRd,c,calc,1	0.929	MN/m ²
 Landesspezifischer Wert 	C _{Rd,c}	0.12	
 Beiwert (Einfluss der Bauteilhöhe) 	k	2.00	
Mittlere statische Nutzhöhe	1		
 Stat. Nutzhöhe 1. Bahn 	dı	20.00	cm
Stat. Nutzhöhe 2. Bahn	d2	18.00	cm
Mittlere statische Nutzhöhe	d	19.00	cm
Mittlerer Längsbewehrungsgrad	-	10.00	
Bewehrungsgrad der 1. Bahn	01	0.016	
E Bewehningsgrad der 2 Bahn	02	0.017	
Mittlerer Längsbewehnungsgrad	0	0.017	
Maximal zulässiger Bewehnungsgrad	0 max	0.017	
Charakteristische Zulinderfestickeit	F max	25.00	N/mm ²
Landessnezifischer Weit	ka l	0.10	-wind-
	Gan	0.10	MN/m2
Membrankraft	Na	0.000	kN/m
Membrankian	Кор	0.00	MNL/m 2
I and exercisities obser West	v Ro,c,calc,2	0.586	MN/m ²
Landesspezifischer Weit	v min	0.586	MIN/ID*
Landesspezinscher Wert	N1	0.10	MNI /m- 2
- jopannung im Beton	0 cp	0.000	MIN/m ⁴
- Memorankraπ	Nop	0.00	KIV/M MNL/- 2
walsgebender Durchstanzwiderstand	V Rd,c	0.929	MIN/m ²
			MN17 2
Einwirkende Querkraft je Hacheneinheit	VEd	1.118	MN/m ²
Maßgebender Durchstanzwiderstand	V Rd,c	0.929	MN/m ²

Bild 5.14: Zwischenergebnisse für Knoten 20

Berechnung nach [3]

$$d = \frac{d_x + d_y}{2} = \frac{0.20 + 0.18}{2} = 0.19 \text{ m}$$

$$u_i = 2 \cdot (2 \cdot 0.45 + \pi \cdot 2.0 \cdot 0.19) = 4.19 \text{ m}$$

$$\nu_{ed} = \beta \cdot \frac{V_{Ed}}{u_i \cdot d}$$

$$V_{Ed} = 809 \text{ kN}$$

$$\beta = 1.10$$

$$\nu_{ed} = 1.10 \cdot \frac{0.809}{4.19 \cdot 0.19} = 1.118 \text{ MN/m}^2$$

5

$$\begin{split} V_{\text{Rd,c}} &= \frac{0,18}{\gamma_c} \cdot k \cdot (100 \cdot \rho_l \cdot f_{\text{ck}})^{\frac{1}{3}} + 0,10 \cdot \sigma_{\text{cp}} \ge \nu_{\text{min}} + 0,10 \cdot \sigma_{\text{cp}} \\ \text{mit} \quad k = 1 + \sqrt{\frac{200}{d}} = \sqrt{\frac{200}{190}} \le 2,0 \\ \nu_{\text{min}} &= \frac{0,0525}{\gamma_c} \cdot k^{\frac{3}{2}} \cdot \sqrt{f_{\text{ck}}} = \frac{0,0525}{1,5} \cdot 2,0^{\frac{3}{2}} \cdot \sqrt{35} = 0,586 \text{ MN/m}^2 \\ \rho_{1,x} &= \frac{31,42}{100 \cdot 20} = 0,0157 \\ \rho_{1,y} &= \frac{31,42}{100 \cdot 18} = 0,0175 \\ \rho_1 &= \sqrt{0,0157 \cdot 0,0175} = 0,0166 \\ &\leq 2,0 \\ &\leq 0,50 \cdot \frac{f_{\text{cd}}}{f_{\text{yd}}} = 0,5 \cdot \frac{19,8}{435} = 0,023 \\ V_{\text{Rd,c}} &= \frac{0,18}{1,5} \cdot 2,0 \cdot (100 \cdot 0,0166 \cdot 35)^{\frac{1}{3}} = 0,928 \text{ MN/m}^2 \\ &> 0,586 \text{ MN/m}^2 = \nu_{\text{min}} \\ &< 1,118 \text{ MN/m}^2 = \nu_{\text{ed}} \end{split}$$

Die in RF-STANZ Pro ermittelten Ergebnisse stimmen exakt mit den in [3] bestimmten Ergebnissen überein.

In den folgenden Bildern sind die weiteren Ergebnisdetails für den Nachweis der Betondruckstrebe, der Zugstrebe und des äußeren Rundschnitts tabellarisch dokumentiert.

Einwirkende Querkraft je Flächeneinheit	VEd	1.118	MN/m ²					
Beiwert	β	1.10						
gemäß Gleichung (6.39) ermittelt								
🕀 In Richtung x								
Beiwert k nach Tabelle 6.1	k _x	0.60						
Ausmittenparallele Abmessung	C1	0.450	m					
Ausmittensenkrechte Abmessung	C2	0.450	m					
Moment im Rundschnittschwerpunkt um y-Ach	MEd.y.sl	-24.46	kNm					
Moment um die y-Achse	My	-24.46	kNm/m					
 Schwerpunkteabstand von Rundschnitt un 	Xsl	0.000	m					
Einwirkende Querkraft	VEd	809.00	kN					
 Maßgebende Durchstanzlast 	VEd	809.00	kN					
 Umfang des kritischen Rundschnitts 	U1	4.188	m					
Widerstandsmoment des Rundschnitts	W _{1,x}	1.76	m ²					
🖃 In Richtung y								
Beiwert k nach Tabelle 6.1	ky	0.60						
Ausmittenparallele Abmessung	C1	0.450	m					
Ausmittensenkrechte Abmessung	C2	0.450	m					
Moment im Rundschnittschwerpunkt um x-Acl	MEd,x,sl	24.43	kNm					
Moment um die x-Achse	Mx	24.43	kNm/m					
 Schwerpunkteabstand von Rundschnitt un 	y si	0.000	m					
Einwirkende Querkraft	VEd	809.00	kN					
Maßgebende Durchstanzlast	VEd	809.00	kN					
Umfang des kritischen Rundschnitts	U1	4.188	m					
Widerstandsmoment des Rundschnitts	W _{1.y}	1.76	m ²					
Einwirkende Querkraft	VEd	809.00	kN					
Lastfall	LF	LF1						
Lastabgewandte Fläche		Oberseite						
Umfang des kritischen Rundschnitts	U1	4.188	m					
 Abstand zur Lasteinleitungsfläche 	lw,1	0.380	m					
 Länge der Lasteinleitungsfläche 	a1	0.45	cm					
Breite der Lasteinleitungsfläche	b1	0.45	cm					
Mittlere statische Nutzhöhe	d	19.00	cm					
 Stat. Nutzhöhe 1. Bahn 	d 1	18.00	cm					
Stat. Nutzhöhe 2. Bahn	d ₂	20.00	cm					
🛱 Maximaler Durchstanzwiderstand je Flächeneinheit								
 Durchstanzwiderstand ohne Durchstanzbewehrung 	V Rd,c	0.929	MN/m ²					
Maximaler Durchstanzwiderstand	V Rd,max	1.300	MN/m ²					
Nachweis								
 Einwirkende Querkraft je Flächeneinheit 	VEd	1.118	MN/m ²					
 Maximaler Durchstanzwiderstand 	V Rd,max	1.300	MN/m ²					
Nachweiskriterium	Kriterium	0.86						

Bild 5.15: Zwischenergebnisse für den Nachweis der Betondruckstrebe

∠ Diubal

Einwirkende Querkraft je Flächeneinheit	VEd	1,118	MN/m ²
- Beiwert	β	1.10	
gemäß Gleichung (6.39) ermittelt			
-⊡ In Richtung x			
Beiwert k nach Tabelle 6.1	kx	0.60	
Ausmittenparallele Abmessung	C1	0.450	m
Ausmittensenkrechte Abmessung	C2	0.450	m
- Moment im Rundschnittschwerpunkt um y-Acl	MEd.y.sl	-24.46	kNm
Moment um die y-Achse	My	-24.46	kNm/m
 Schwerpunkteabstand von Rundschnitt un 	Xsl	0.000	m
Einwirkende Querkraft	VEd	809.00	kN
 Maßgebende Durchstanzlast 	VEd	809.00	kN
 Umfang des kritischen Rundschnitts 	U1	4,188	m
Widerstandsmoment des Rundschnitts	W _{1.x}	1.76	m ²
🖃 In Richtung y			
Beiwert k nach Tabelle 6.1	kv	0.60	
Ausmittenparallele Abmessung	C1	0.450	m
Ausmittensenkrechte Abmessung	C2	0.450	m
- Moment im Rundschnittschwerpunkt um x-Acl	MEd.x.sl	24.43	kNm
Moment um die x-Achse	Mx	24.43	kNm/m
 Schwerpunkteabstand von Rundschnitt un 	Vsl	0.000	m
Einwirkende Querkraft	VEd	809.00	kN
 Maßgebende Durchstanzlast 	VEd	809.00	kN
 Umfang des kritischen Rundschnitts 	U1	4,188	m
Widerstandsmoment des Rundschnitts	W _{1.v}	1.76	m ²
Einwirkende Querkraft	VEd	809.00	kN
- Lastfall	LF	LF1	
Lastabgewandte Fläche		Oberseite	
🖃 Umfang des kritischen Rundschnitts	U1	4.188	m
 Abstand zur Lasteinleitungsfläche 	lw,1	0.380	m
 Länge der Lasteinleitungsfläche 	a1	0.45	cm
Breite der Lasteinleitungsfläche	b1	0.45	cm
Mittlere statische Nutzhöhe	d	19.00	cm
 Stat. Nutzhöhe 1. Bahn 	d1	18.00	cm
Stat. Nutzhöhe 2. Bahn	d2	20.00	cm
Durchstanzwiderstand mit Durchstanzbewehrung	V Rd,cs	1.118	MN/m ²
 Durchstanzwiderstand ohne Durchstanzbewehrung 	V Rd,c	0.929	MN/m ²
Mittlere statische Nutzhöhe			
 Stat. Nutzhöhe 1. Bahn 	d ₁	20.00	cm
 Stat. Nutzhöhe 2. Bahn 	d2	18.00	cm
Mittlere statische Nutzhöhe	d	19.00	cm
Radialabstand Bewehrungsreihen	Sr	0.10	m
 Durchstanzbewehrung im Rundschnitt 	Asw	3.92	cm ²
Wirksame Bewehrungsfestigkeit	fywd,ef	297.50	N/mm ²
 Umfang des kritischen Rundschnitts 	U1	4.188	m
Winkel Bewehrung \Plattenebene	α	90.00	•
Nachweis			
Einwirkende Querkraft je Flächeneinheit	VEd	1.118	MN/m ²
 Durchstanzwiderstand mit Durchstanzbewehrung 	V Rd,cs	1.118	MN/m ²
Nachweiskriterium	Kriterium	1.00	

Bild 5.16: Zwischenergebnisse für den Nachweis der Zugstrebe

5

∠ Diubai

Einwidzende Ouedareft in Einshanninheit		0.774	MNI/m2
	V Ed,out	U.//4	MIN/III~
E beiwent	p	1.10	
gemais Gleichung (6.39) emitteit			
Beiwert k nach Tabelle 6.1	κ _x	0.60	
Ausmittenparallele Abmessung	C1	0.450	m
Ausmittensenkrechte Abmessung	C2	0.450	m
Moment im Rundschnittschwerpunkt um y-Acl	MEd.y.sl	-24.46	kNm
 Moment um die y-Achse 	My	-24.46	kNm/m
 Schwerpunkteabstand von Rundschnitt un 	Xsl	0.000	m
Einwirkende Querkraft	VEd	809.00	kN
 Maßgebende Durchstanzlast 	VEd	809.00	kN
 Umfang des kritischen Rundschnitts 	U1	4.188	m
Widerstandsmoment des Rundschnitts	W _{1.x}	1.76	m ²
🖃 In Richtung v			
Beiwert k nach Tabelle 6.1	kv	0.60	
	C1	0.00	m
	01	0.450	m
Moment im Rundschnittschwemunkt um x-Aol	Meducal	24.42	k Nm
Memoritum dia x Achae	MED,X,SI	24.43	k Nex /m
Sohwamunitashatand yan Bundashaitt un	M X	24.43	KINIII/III
Schwerpunkteabstand von Rundschnitt un	y si	0.000	m
Einwirkende Querkraft	VEd	809.00	KIN
Maßgebende Durchstanzlast	VEd	809.00	ĸN
Umfang des kritischen Rundschnitts	U1	4.188	m
Widerstandsmoment des Rundschnitts	W _{1,y}	1.76	m²
Einwirkende Querkraft	VEd	809.00	kN
- Lastfall	LF	LF1	
Lastabgewandte Fläche		Oberseite	
Umfang des äußeren Rundschnitts	Ua	6.054	m
Abstand zur Lasteinleitungsfläche	lw,out	0.677	m
Mittlere statische Nutzhöhe	d	19.00	cm
 Stat. Nutzhöhe 1. Bahn 	d1	18.00	cm
Stat. Nutzhöhe 2. Bahn	d ₂	20.00	cm
Durchstanzwiderstand ohne Durchstanzbewehrung			
Grunddurchstanzwiderstand nach (6.47)	VRd.c.calc.1	0.774	MN/m ²
Landesspezifischer Wert	CRd c	0.10	
Beiwert (Einfluss der Bauteilhöhe)	k	2.00	
Hittlere statische Nutzhöhe		2.00	
Stat. Nutzböhe 1. Bahn	d a	20.00	cm
Stat. Nutzhöhe 2 Bahn	da	20.00	om
Juli, Nutzhone z. Dann		10 00	om
Mittlere statische Nutzhähe	d	18.00	cm
Mittlere statische Nutzhöhe	d	18.00 19.00	cm cm
Mittlere statische Nutzhöhe	d	18.00 19.00	cm cm
Mittlere statische Nutzhöhe	α2 d	18.00 19.00 0.016	cm cm
Mittlere statische Nutzhöhe Mittlere Längsbewehrungsgrad Bewehrungsgrad der 1. Bahn Bewehrungsgrad der 2. Bahn	μ2 d P1 P2	18.00 19.00 0.016 0.017	cm cm
Mittlere statische Nutzhöhe Mittlere Längsbewehrungsgrad Bewehrungsgrad der 1. Bahn Bewehrungsgrad der 2. Bahn Mittlerer Längsbewehrungsgrad	φ ₂ d p ₁ p ₂ p	18.00 19.00 0.016 0.017 0.017	cm cm
Mittlere statische Nutzhöhe Mittlerer Längsbewehrungsgrad Bewehrungsgrad der 1. Bahn Bewehrungsgrad der 2. Bahn Mittlerer Längsbewehrungsgrad Maximal zulässiger Bewehrungsgrad	ρ1 ρ2 ρ ρmax	18.00 19.00 0.016 0.017 0.017 0.020	cm cm
Mittlere statische Nutzhöhe Mittlere Längsbewehrungsgrad Bewehrungsgrad der 1. Bahn Bewehrungsgrad der 2. Bahn Mittlerer Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad Charakteristische Zylinderfestigkeit	02 d ρ1 ρ2 ρ ρmax fck	18.00 19.00 0.016 0.017 0.017 0.020 35.00	cm cm N/mm ²
Mittlerer statische Nutzhöhe Mittlerer Längsbewehnungsgrad Bewehnungsgrad der 1. Bahn Bewehnungsgrad der 2. Bahn Mittlerer Längsbewehnungsgrad Maximal zulässiger Bewehnungsgrad Charakteristische Zylinderfestigkeit Landesspezifischer Wert	φ1 φ2 φ φ φ φ φ φ φ φ φ φ φ φ φ	18.00 19.00 0.016 0.017 0.020 35.00 0.10	cm cm N/mm ²
Mittlere statische Nutzhöhe Mittlerer Längsbewehnungsgrad Bewehnungsgrad der 1. Bahn Bewehnungsgrad der 2. Bahn Mittlerer Längsbewehnungsgrad Charakteristische Zylinderfestigkeit Landesspezifischer Wert Spannung im Beton	φ1 φ2 φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ	18.00 19.00 0.016 0.017 0.017 0.020 35.00 0.10 0.000	cm cm N/mm ² MN/m ²
Mittlere statische Nutzhöhe Mittlere Längsbewehrungsgrad Bewehrungsgrad der 1. Bahn Bewehrungsgrad der 2. Bahn Mittlerer Längsbewehrungsgrad Maximal zulässiger Bewehrungsgrad Charakteristische Zylinderfestigkeit Landesspezifischer Wert Spannung im Beton Membrankraft	φ1 φ2 φ	18.00 19.00 0.016 0.017 0.017 0.020 35.00 0.10 0.000 0.00	cm cm N/mm ² MN/m ² kN/m
Mittlere statische Nutzhöhe Mittlere Längsbewehrungsgrad Bewehrungsgrad der 1. Bahn Bewehrungsgrad der 2. Bahn Mittlerer Längsbewehrungsgrad Maximal zulässiger Bewehrungsgrad Charakteristische Zylinderfestigkeit Landesspezifischer Wett Spannung im Beton Membrankraft Mindestdurchstanzwiderstand nach (6.47)	μ φ	18.00 19.00 0.016 0.017 0.020 35.00 0.10 0.000 0.000 0.586	cm cm N/mm ² MN/m ² kN/m MN/m ²
Mittlere statische Nutzhöhe Mittlere Längsbewehrungsgrad Bewehrungsgrad der 1. Bahn Mittlerer Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad Charakteristische Zylinderfestigkeit Landesspezifischer Wert Spannung im Beton Membrankraft Mindestdurchstanzwiderstand nach (6.47) Landesspezifischer Wert	μ φ	18.00 19.00 0.016 0.017 0.020 35.00 0.10 0.000 0.000 0.586 0.586	cm cm N/mm ² MN/m ² kN/m MN/m ² MN/m ²
Mittlere statische Nutzhöhe Mittlerer Längsbewehrungsgrad Bewehrungsgrad der 1. Bahn Bewehrungsgrad der 2. Bahn Mittlerer Längsbewehrungsgrad Maximal zulässiger Bewehrungsgrad Charakteristische Zylinderfestigkeit Landesspezifischer Wert Membrankraft Mindestdurchstanzwiderstand nach (6.47) Landesspezifischer Wert Landesspezifischer Wert	μ φ	18.00 19.00 0.016 0.017 0.020 35.00 0.10 0.000 0.586 0.586 0.10	cm cm N/mm ² MN/m ² kN/m MN/m ² MN/m ²
Mittlere statische Nutzhöhe Mittlerer Längsbewehnungsgrad Mittlerer Längsbewehnungsgrad Mittlerer Längsbewehnungsgrad Mittlerer Längsbewehnungsgrad Maximal zulässiger Bewehrungsgrad Charakteristische Zylinderfestigkeit Landesspezifischer Wert Spannung im Beton Membrankraft Mindestdurchstanzwiderstand nach (6.47) Landesspezifischer Wert Spannung im Beton Membrankraft Mindestdurchstanzwiderstand nach (6.47) Landesspezifischer Wert Spannung im Beton Membrankraft Mindestdurchstanzwiderstand nach (6.47) Mittlerer Landesspezifischer Wert Spannung im Beton Membrankraft Mindestdurchstanzwiderstand nach (6.47) Chardesspezifischer Wert Mittlerer Landesspezifischer Wert Spannung im Beton Methode	μ φ	18.00 19.00 0.016 0.017 0.020 35.00 0.10 0.000 0.586 0.586 0.10 0.000	cm cm N/mm ² MN/m ² MN/m ² MN/m ²
Mittlere statische Nutzhöhe Mittlere Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad der 2. Bahn Mittlerer Längsbewehrungsgrad Maximal zuläsiger Bewehrungsgrad Charakteristische Zylinderfestigkeit Landesspezifischer Wert Spannung im Beton Membrankraft Spannung im Beton Membrankraft Spannung im Beton Membrankraft	μ φ	18.00 19.00 0.016 0.017 0.017 0.020 35.00 0.10 0.000 0.586 0.586 0.10 0.586 0.10 0.000 0.000 0.000	cm cm N/mm ² MN/m ² kN/m MN/m ² MN/m ²
Mittlere statische Nutzhöhe Mittlere Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad Maximal zulässiger Bewehrungsgrad Charakteristische Zylinderfestigkeit Landesspezifischer Wert Spannung im Beton Membrankraft Spannung im Beton Membrankraft Maßgebender Durchstanzwiderstand	μ φ	18.00 19.00 0.016 0.017 0.020 35.00 0.10 0.000 0.000 0.586 0.586 0.586 0.10 0.000 0.586	cm cm N/mm ² MN/m ² KN/m MN/m ² MN/m ² KN/m MN/m ²
Mittlere statische Nutzhöhe Mittlere Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad Maximal zulässiger Bewehrungsgrad Charakteristische Zylinderfestigkeit Landesspezifischer Wert Mindestdurchstanzwiderstand nach (6.47) Landesspezifischer Wert Spannung im Beton Membrankraft Nachweis	μ2 φ φ1 φ2 φ φmax fok k1 σcp V Rd,c,calc,2 V min k1 σcp Nop V Rd,c,calc,2	18.00 19.00 0.016 0.017 0.020 35.00 0.10 0.000 0.586 0.586 0.586 0.10 0.000 0.000 0.774	cm cm N/mm ² MN/m ² KN/m MN/m ² MN/m ² KN/m MN/m ²
Mittlere statische Nutzhöhe Mittlerer Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad Maximal zulässiger Bewehrungsgrad Charakteristische Zylinderfestigkeit Landesspezifischer Wert Spannung im Beton Membrankraft Maßgebender Durchstanzwiderstand Nachweis Einwikrende Querkraft in Eicheneicheit	Q2 Q φ φ2 φ φ <	18.00 19.00 0.016 0.017 0.020 35.00 0.10 0.000 0.586 0.586 0.10 0.000 0.000 0.774	cm cm N/mm ² MN/m ² kN/m MN/m ² MN/m ² kN/m MN/m ² kN/m MN/m ²
Mittlere statische Nutzhöhe Mittlerer Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad Maximal zulässiger Bewehrungsgrad Charakteristische Zylinderfestigkeit Landesspezifischer Wert Spannung im Beton Membrankraft Landesspezifischer Wert Spannung im Beton Membrankraft Maßgebender Durchstanzwiderstand Nachweis Einwirkende Querkraft je Flächeneinheit Maßgebender Durchstanzwiderstand	Q2 Q d P1 P2 P fok K1 Gop VRd,c,calc,2 Vmin K1 Gop Nop VRd,c	18.00 19.00 0.016 0.017 0.017 0.020 35.00 0.10 0.000 0.586 0.586 0.586 0.10 0.000 0.586 0.774	cm cm N/mm ² MN/m ² MN/m ² MN/m ² MN/m ² MN/m ² MN/m ²
Mittlere statische Nutzhöhe Mittlere Längsbewehrungsgrad Mittlerer Längsbewehrungsgrad Bewehrungsgrad der 1. Bahn Bewehrungsgrad der 2. Bahn Mittlerer Längsbewehrungsgrad Maximal zulässiger Bewehrungsgrad Maximal zulässiger Bewehrungsgrad Charakteristische Zylinderfestigkeit Landesspezifischer Wert Spannung im Beton Membrankraft Mindestdurchstanzwiderstand nach (6.47) Landesspezifischer Wert Spannung im Beton Membrankraft Magebender Durchstanzwiderstand Naßgebender Durchstanzwiderstand Naßgebender Durchstanzwiderstand Maßgebender Durchstanzwiderstand Maßgebender Durchstanzwiderstand	Q2 Q d P1 P2 P P max fok k1 Gop VRd,c,calo,2 Vmin k1 Gop Nop VRd,c VEd VRd,c	18.00 19.00 0.016 0.017 0.017 0.020 35.00 0.10 0.000 0.586 0.586 0.10 0.000 0.586 0.586 0.10 0.000 0.774	cm cm N/mm ² MN/m ² kN/m MN/m ² kN/m MN/m ² kN/m MN/m ² MN/m ²

Bild 5.17: Zwischenergebnisse für den Nachweis am äußeren Rundschnitt

5

5.5.2 Durchstanzbewehrung

In Maske 2.2 Durchstanzbewehrung werden die Bewehrungsflächen einer jeden Bewehrungsart ausgegeben.

	А	B	С	D	E	F
Knoten				Bewehrungs-		Fehlemeldung
Nr.	Bauteil	Belastung	Bewehrungsart	fläche	Einheit	Hinweis
20	Platte	LF1	Plattenoberseite in Richtung ø1	31.42	cm ² /m	
			Plattenoberseite in Richtung ø2	31.42	cm ² /m	
			Plattenunterseite in Richtung	0.00	cm ² /m	
			Plattenunterseite in Richtung	0.00	cm ² /m	
			1. Rundschnitt	9.80	cm ²	
			2. Rundschnitt	5.49	cm ²	
			3. Rundschnitt	3.92	cm ²	
			4. Rundschnitt	3.92	cm ²	

Bild 5.18: Maske 2.2 Erforderliche Durchstanzbewehrung

Die im Bild 5.18 angegebene Plattenlängsbewehrung auf der Oberseite wurde vor der Berechnung auf den Wert von 31,42 cm²/m festgelegt. Sie wurde entsprechend für die Nachweisführung berücksichtigt.

Rechnerisch ergeben sich für das Beispiel vier innere Rundschnitte, an denen eine Durchstanzbewehrung vorzusehen ist. In folgender Berechnung wird der Wert der erforderlichen Durchstanzbewehrung *erf A*_{sw} ermittelt:

$$\nu_{\rm Rd,cs} = 0.75 \cdot \nu_{\rm Rd,c} + 1.5 \cdot \frac{d}{s_{\rm r}} \cdot A_{\rm sw} \cdot \frac{f_{\rm ywd,ef}}{u_{\rm l} \cdot d} \cdot \sin \alpha$$

mit

$$\begin{split} f_{\rm ywd,ef} &= 250 + 0.25 \cdot d \leq f_{\rm ywd} \\ f_{\rm ywd,ef} &= 250 + 0.25 \cdot 190 = 297.5 \ {\rm MN/m^2} < 435 \ {\rm MN/m^2} \end{split}$$

gewählt: $s_r = 0,10 \text{ m} = 0,526 \cdot d$

$$A_{sw} = (\nu_{ed} - 0.75 \cdot \nu_{Rd,c}) \cdot u_1 \cdot \frac{d}{1.5 \cdot \frac{d}{S_r} \cdot f_{ywd,ef}}$$
$$A_{sw} = (1,118 - 0.75 \cdot 0.929) \cdot 4.19 \cdot \frac{0.19}{1.5 \cdot \frac{1}{0.526} \cdot 297.5} \cdot 10^4 = 3.92 \text{ cm}^2$$

Für die ersten zwei Reihen wird die Bewehrungsmenge mit dem Anpassungsfaktor κ_{sw} gemäß [1] vergrößert. Hieraus ergibt sich folgende Durchstanzbewehrung:

erf
$$A_{sw,1} = \kappa_{sw,1} \cdot A_{sw,1} = 2,5 \cdot 3,92 = 9,80 \text{ cm}^2$$

erf $A_{sw,2} = \kappa_{sw,2} \cdot A_{sw,2} = 1,4 \cdot 3,92 = 5,49 \text{ cm}^2$
erf $A_{sw,3} = \text{erf } A_{sw,4} = 3,92 \text{ cm}^2$

Hinweis:

In diesem Beispiel wurde mit der Durchstanzlast von V_{Ed} = 809 kN aus dem Referenzbeispiel in [3] gerechnet. Die Ergebnisse aus der Referenzlösung können nicht bestätigt werden. Im Modul RF-STANZ Pro werden – anstelle der drei Durchstanzreihen in [3] – vier Reihen an Durchstanzbewehrung erforderlich. Bei genauerer Analyse der Referenzlösung stellt sich heraus, dass dort bei der Festlegung der Durchstanzreihen der Abstand des äußeren Rundschnittes a_{out} von 0,675 m auf 0,665 m (entspricht 3,5 d) abgerundet und somit eine vierte Durchstanzreihe vermieden wurde. Aufgrund dieser Maßnahme ist der Durchstanznachweis nach DIN EN 1992-1-1 in [3] streng genommen als nicht erfüllt anzusehen.

Das in [3] berechnete Ergebnis lässt sich mit RF-STANZ Pro auch mit drei Durchstanzreihen nachvollziehen, wenn die Anzahl und die Abstände der inneren Rundschnitte in Maske 1.5 entsprechend für den Nachweis festgelegt werden. Hierbei wird in der Ergebnismaske 2.1 jedoch eine Meldung ausgegeben, dass der Nachweis nicht eingehalten ist.

Die Zwischenergebnisse stehen in unterem Teil der Maske 2.2 für die einzelnen Bewehrungsarten (Plattenoberseite in Richtung φ_1 und φ_2 , Plattenunterseite in Richtung φ_1 und φ_2 sowie Durchstanzbewehrung in den Rundschnitten 1 bis 4) einsehbar.

Zwischenergebnisse - Knoten Nr. 20			
🛱 Für Querkrafttragfähigkeit			
🕀 Erforderlicher Längsbewehrungsgrad	ρ	0.017	
- Bewehrungsgrad der 1. Bahn	ρ1	0.016	
Erf. Längsbewehrung	erfas,1	31.42	cm ² /m
Stat. Nutzhöhe 1. Bahn	d1	20.00	cm
- Bewehrungsgrad der 2. Bahn	ρ2	0.017	
- Erf. Längsbewehrung	erfa _{s,2}	31.42	cm ² /m
Stat. Nutzhöhe 2. Bahn	d2	18.00	cm
Maximal zulässiger Bewehrungsgrad	ρmax	0.020	
 Erf. Bewehrung 	enfas	31.42	cm ² /m
 Erf. Länge der Bewehrung 	lr.	1.804	m
Erf. Verlegebreite der Bewehrung	br	1.590	m
🔁 Definierte Längsbewehrung			
 Verlegebreite 	b1,o	1.59	m
Definierte Längsbewehrung	vorh a _{s,1,0}	31.42	cm ² /m

Bild 5.19: Zwischenergebnisse für Plattenoberseite in Richtung $arphi_1$

Zwischenergebnisse - Knoten Nr. 20			
🛱 Für Querkrafttragfähigkeit			
Erforderlicher Längsbewehrungsgrad	ρ	0.017	
–⊟ Bewehrungsgrad der 1. Bahn	ρ1	0.016	
 Erf. Längsbewehrung 	erfa _{s,1}	31.42	cm ² /m
Stat. Nutzhöhe 1. Bahn	d 1	20.00	cm
Bewehrungsgrad der 2. Bahn	ρ2	0.017	
 Erf. Längsbewehrung 	enfa _{s,2}	31.42	cm ² /m
Stat. Nutzhöhe 2. Bahn	d2	18.00	cm
Maximal zulässiger Bewehrungsgrad	ρmax	0.020	
- Erf. Bewehrung	enfas	31.42	cm ² /m
 Erf. Länge der Bewehrung 	lr -	1.804	m
Erf. Verlegebreite der Bewehrung	br	1.590	m
🔁 Definierte Längsbewehrung			
- Verlegebreite	b 2,0	1.59	m
Definierte Längsbewehrung	vorh a _{s,2,0}	31.42	cm ² /m

Bild 5.20: Zwischenergebnisse für Plattenoberseite in Richtung $arphi_2$

Für die Plattenunterseite wird keine Bewehrung erforderlich; dementsprechend sind hier die Zwischenergebnisse nicht aufgelistet.

		т	
	-		
-		Л	
_			
_	_		

Abstand erstes und letztes inneres Rundschnitts	Xin	0.50	m
Max. zulässiger Abstand innere Rundschnitte	max sr	0.14	m
Rech. erf. Anzahl Abstände	N dis,calc	2.08	
Gewählte Anzahl Abstände	Ndis	3	
Gewählte Anzahl Rundschnitte	n in	4	
.age des 1. Rundschnitts		0.40	
Omrang des Rundschnitts	u lu	2.40	m
Einwirkende Querkraft ie Flächeneinheit	VEd	1.954	MN/m ²
∃ Beiwert	β	1.10	
gemäß Gleichung (6.39) ermittelt			
□ In Richtung x			
Beiwert k nach Tabelle 6.1	K _X	0.60	-
Ausmittensenkrechte Abmessung	C2	0.450	m
Moment im Rundschnittschwerpunkt um y-Acl	MEd.y.sl	-24.46	kNm
 Moment um die y-Achse 	My	-24.46	kNm/m
Schwerpunkteabstand von Rundschnitt un	Xsl	0.000	m
Einwirkende Querkraft Maßgebende Durchetanzlast	VEd	809.00	KN EN
Umfang des kritischen Rundschnitts		2 397	m
Widerstandsmoment des Rundschnitts	W _{1,x}	0.56	m ²
📮 In Richtung y			
Beiwert k nach Tabelle 6.1	ky	0.60	
Ausmittenparallele Abmessung	C1	0.450	m
Ausmittensenkrechte Abmessung	C2	0.450	m k Nm
Moment um die x-Achse	M _x	24.43	kNm/m
 Schwerpunkteabstand von Rundschnitt un 	y si	0.000	m
Einwirkende Querkraft	VEd	809.00	kN
Maßgebende Durchstanzlast	VEd	809.00	kN
Umfang des kritischen Rundschnitts	U1	2.397	m
Widerstandsmoment des Rundschnitts Einwirkende Ouerkraft	W 1.y	0.56	m² ⊮N
	LF	809.00	KIN
Lastabgewandte Fläche		Oberseite	
🖵 Umfang des kritischen Rundschnitts	U1	2.397	m
Abstand zur Lasteinleitungsfläche	lw,1	0.095	m
Mittlere statische Nutzhöhe	d	19.00	cm
Stat. Nutzhohe 1. Bahn	d1	20.00	cm
Durchstanzwiderstand ohne Durchstanzbewehning	u2	18.00	Cill
Grunddurchstanzwiderstand nach (6.47)	V Rd.c.calc.1	0.929	MN/m ²
Landesspezifischer Wert	C _{Rd,c}	0.12	
Beiwert (Einfluss der Bauteilhöhe)	k	2.00	
Mittlere statische Nutzhöhe			
- Stat. Nutzhohe 1. Bahn	d1	20.00	cm
Mittlere statische Nutzhöhe	d2	18.00	cm
Mittlerer Längsbewehrungsgrad	-	10.00	
- 🕀 Bewehrungsgrad der 1. Bahn	ρ1	0.016	
- 🕀 Bewehrungsgrad der 2. Bahn	ρ2	0.017	
Mittlerer Längsbewehrungsgrad	ρ	0.017	
Maximal zulassiger Bewehrungsgrad	ρ max	0.020	N /mm 2
Landesspezifischer Wert	rok k i	35.00	N/mm*
Spannung im Beton	σcp	0.000	MN/m ²
Membrankraft	Ncp	0.00	kN/m
Mindestdurchstanzwiderstand nach (6.47)	VRd,c,calc,2	0.586	MN/m ²
Landesspezifischer Wert	V min	0.586	MN/m ²
Landesspezifischer Wert	K1	0.10	MN / 2
Membrankraft	Non	0.000	kN/m ²
- Maßgebender Durchstanzwiderstand	VRd.c	0.00	MN/m ²
Statisch erforderliche Durchstanzbewehrung		3.323	
Mittlere statische Nutzhöhe	d	19.00	cm
Radialabstand Bewehrungsreihen	Sr	0.10	m
- Wirksame Bewehrungsfestigkeit	tywd,ef	297.50	N/mm ²
Umrang des Knüschen Hundschnitts	U1	4.188	m
- Gewählter Erhöhungsfaktor	ksw	2.50	
Statische erforderliche Durchstanzbewehrung	A _{sw,stat}	9.80	cm ²
Mindestdurchstanzbewehrung			
Mindestquerschnitt je Bügelschenkel	Asw,min,Bügel	0.17	cm ²
Paktor tur Bugelart gem. 9.4.3(2)	K Bügel	1.50	NI/2
Charakteristische Rewehnungsfestigkeit	Fok	35.00	N/mm ²
Neigung der Durchstanzbewehrung	α	90.00	•
Radialabstand Bewehrungsreihen	Sr	0.10	m
Tangentialabstand Bewehrungsreihen	st	0.266	m
Umfang des Rundschnitts	U1	2.40	m
Emittelte Mindestanzahl	n	9	
Immuestanzani bugeischenkei IIII Bech eif Mindestanzahl	Reals	0.41	
Emittelte Mindestanzahl	n	<u>٥.41</u>	
Mindestdurchstanzbewehrung	A _{sw.min}	1 50	cm ²
Ermittelte Mindestanzahl	n	9	
Mindestquerschnitt je Bügelschenkel	A _{sw,min,Bügel}	0.17	cm ²
Maximaler Durchmesser Bügelschenkel	max Φ_{sw}	0.95	cm
Mittlere statische Nutzhöhe	d	19.00	cm
Masgebende Durchstanzbewehrung Asw	A	0.00	cm ²
- Mindestdurchstanzbewehrung	Asw.min	9.80	cm ²
		1.30	

Abstand erstes und letztes inneres Rundschoitta	Xin	n 20	m
- Max zulässiger Abstand innere Bundschnitte	max sr	0.30	m
- Rech. erf. Anzahl Abstände	D dis calo	2.08	
Gewählte Anzahl Abstände	n dis	3	
Gewählte Anzahl Rundschnitte	n in	4	
Lage des 2. Rundschnitts			
Umfang des Rundschnitts	u	3.02	m
Abstand zur Lasteinleitungsfläche	l _w	0.19	m
Einwirkende Querkraft je Flächeneinheit	VEd	1.551	MN/m ²
Beiwert	β	1.10	
gemäß Gleichung (6.39) ermittelt			
In Richtung x			
Beiwert k nach Tabelle 6.1	kx	0.60	
Ausmittenparallele Abmessung	C1	0.450	m
Ausmittensenkrechte Abmessung	C2	0.450	m
Moment im Rundschnittschwerpunkt um y-Acl	MEd,y,sl	-24.46	kNm
Moment um die y-Achse	My	-24.46	kNm/m
 Schwerpunkteabstand von Rundschnitt un 	Xsl	0.000	m
Einwirkende Querkraft	VEd	809.00	KIN
Maligebende Durchstanziast	VEd	809.00	KIN
Umrang des knitischen Rundschnitts	U1	3.019	m m2
Viderstandsmoment des Rundschnitts	VV 1,x	0.90	m-
Reivert k pach Tabelle 6 1	k.	0.00	
	Ky Of	0.60	-
Ausmittensenkrechte Abmessung	C2	0.450	m
Ausmittensenkrechte Abmessung	MEd y -1	0.450	n kNm
Moment um die x-Achse	M _x	24.43	kNm/m
 Schwerpunkteabstand von Rundschnitt un 	Vel	24.43	m
Einwirkende Querkraft	VEd	0.000 809 00	kN
Maßgebende Durchstanzlast	VEd	809.00	kN
Umfang des kritischen Rundschnitts	U1	3 019	m
Widerstandsmoment des Rundschnitts	W _{1,y}	0.90	m ²
∃ Einwirkende Querkraft	VEd	809.00	kN
- Lastfall	LF	LF1	
Lastabgewandte Fläche		Oberseite	
🗆 Umfang des kritischen Rundschnitts	U1	3.019	m
Abstand zur Lasteinleitungsfläche	lw,1	0.194	m
Mittlere statische Nutzhöhe	d	19.00	cm
 Stat. Nutzhöhe 1. Bahn 	d1	20.00	cm
Stat. Nutzhöhe 2. Bahn	d ₂	18.00	cm
Durchstanzwiderstand ohne Durchstanzbewehrung			
Grunddurchstanzwiderstand nach (6.47)	VRd,c,calc,1	0.929	MN/m ²
 Landesspezifischer Wert 	C _{Rd,c}	0.12	
Beiwert (Einfluss der Bauteilhöhe)	k	2.00	
Mittlere statische Nutzhöhe			
Stat. Nutzhöhe 1. Bahn	d1	20.00	cm
Stat. Nutzhohe 2. Bahn	d2	18.00	cm
Malana Länaskanska su	d	19.00	cm
Mittierer Langsbewenrungsgrad		0.010	
Bewehrungsgrau der 1. bann	ρ1	0.015	
Bewenrungsgrau der 2. bann	ρ ₂	0.017	
Maximal zulässiger Rewehnungsgrad	P	0.017	
Charakteristische Zuinderfestigkeit	P max Fair	25.00	N/mm2
Landessnezifischer Wert	I CK	0.10	1971001-
	K1	0.10	MN/m2
Membrankraft	Nee	0.000	kN/m
Mindestdurchstanzwiderstand nach (6.47)	WBd e colo 2	0.00	MN/m2
Landesspezifischer Wert	V min	0.000	MN/m ²
Landesspezifischer Wert	k1	0.000	
Spannung im Beton	σ _{cp}	0.00	MN/m ²
Membrankraft	Ncp	0.00	kN/m
Maßgebender Durchstanzwiderstand	V Rd,c	0.929	MN/m ²
Statisch erforderliche Durchstanzbewehrung			
Mittlere statische Nutzhöhe	d	19.00	cm
Radialabstand Bewehrungsreihen	Sr	0.10	m
Wirksame Bewehrungsfestigkeit	fywd,ef	297.50	N/mm ²
🗆 Umfang des kritischen Rundschnitts	U1	4.188	m
Abstand zur Lasteinleitungsfläche	w.1	0.380	m
Gewählter Erhöhungsfaktor	ksw	1.40	
Statische erforderliche Durchstanzbewehrung	A _{sw,stat}	5.49	cm ²
Mindestdurchstanzhewehnung			_
Mindealddronaldi izbeweniiding	Asw,min,Bügel	0.17	cm ²
Mindestquerschnitt je Bügelschenkel			
☐ Mindestquerschnitt je Bügelschenkel Faktor für Bügelart gem. 9.4.3(2)	k Bügel	1.50	ALC: 5
☐ Mindestquict istal zooren traing ☐ Mindestquerschnitt [= Bügelschenkel Faktor für Bügelart gem. 9.4.3(2) Charakteristische Zylinderfestigkeit ☐ Diarkteristische Zylinderfestigkeit	k Bügel f _{ok}	1.50 35.00	N/mm ²
Mindestquerschnitt je Bügelschenkel Faktor für Bügelart gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Charakteristische Bewehrungsfestigkeit	k Bügel fok fyk	1.50 35.00 500.00	N/mm ² N/mm ²
Mindestquerschnitt je Bügelschenkel Faktor für Bügelart gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Charakteristische Bewehrungsfestigkeit Neigung der Durchstanzbewehrung	k Bügel f _{ck} f _{yk} α	1.50 35.00 500.00 90.00	N/mm ² N/mm ²
Mindesturgerschnitt je Bügelschenkel Faktor für Bügelatt gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Charakteristische Bewehrungsfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen	k Bügel fok fyk α Sr	1.50 35.00 500.00 90.00 0.10	N/mm ² N/mm ² °
Mindestuerschnitt je Bügelschenkel Faktor für Bügelant gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Charakteristische Bewehrungsfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen Tangentialabstand Bewehrungsreihen	k Bügel fok fyk α sr st	1.50 35.00 500.00 90.00 0.10 0.274	N/mm ² N/mm ² ° m m
Mindestudichtad under Verlag Mindestguerschnitt je Bigelschenkel Faktor für Bügelat gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Charakteristische Bewehrungsfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen Tangentialabstand Bewehrungsreihen Umfang des Rundschnitts Evertite Ministrie	k Bügel fok fyk α sr st u2 -	1.50 35.00 500.00 90.00 0.10 0.274 3.02	N/mm ² N/mm ² ° m m m
Mindestaularitetaurikeiten big Mindestguerschnitt je Bügelschenkel Faktor für Bügelatt gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Charakteristische Bewehrungsfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen Tangentialabstand Bewehrungsreihen Umfang des Rundschnitts Emittetle Mindestanzahl	k Bügel fok fyk α sr st u2 n	1.50 35.00 500.00 90.00 0.10 0.274 3.02 11	N/mm ² N/mm ² ° m m m
Mindestauda istat understand i Bügelschenkel Mindestauerschnitt je Bügelschenkel Faktor für Bügelant gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Charakteristische Bewehrungsfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen Umfang des Rundschnitts Emtitelte Mindestanzahl Mindestanzahl	k Bügel fok fyk α sr sr st u2 n	1.50 35.00 500.00 90.00 0.10 0.274 3.02 11	N/mm ² N/mm ² ° m m m
Mindestaudrik at understand in Standard in Standard in Standard in Standard in Standard International Internation	k Bügel fok fyk α sr st U2 n n n n n	1.50 35.00 500.00 0.10 0.274 3.02 11	N/mm ² N/mm ² ° m m m
Mindestauda istat understandig Mindestauerschnitt je Bugelschenkel Faktor für Bügelant gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Charakteristische Bewehnungsfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen Umfang des Rundschnitts Ermittelte Mindestanzahl Mindestanzahl Ench. erf. Mindestanzahl Emittelte Mindestanzahl	k Bügel fok fyk α sr st U2 n n n n n ο	1.50 35.00 500.00 0.10 0.274 3.02 11 10.59	N/mm ² N/mm ² ° m m m
Mindestaudrikteunschnitt in Bügelschenkel Mindestguerschnitt je Bügelschenkel Faktor für Bügelat gem. 9.4.3(2) Charakterstische Zylinderfestigkeit Charakterstische Bewehnungsfestigkeit Neigung der Durchstanzbewehnung Radialabstand Bewehnungsreihen Tangentialabstand Bewehnungsreihen Umfang des Rundschnitts Emittelte Mindestanzahl Emittelte Mindestanzahl Mindestdurchstanzbewehnung	k Bügel fok fok fyk α \$r \$st u2 n noalo n Asw.min	1.50 35.00 90.00 0.10 0.274 3.02 11 10.59 11 1.89	N/mm ² N/mm ² m m m cm ²
Mindestauerschnitt je Bügelschenkel Mindestauerschnitt je Bügelschenkel Faktor für Bügelant gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Charakteristische Bewehrungsfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen Radialabstand Bewehrungsreihen Umfang des Rundschnitts Emittelte Mindestanzahl Mindestanzahl Mindestaurch Bügelschenkel Mindestanzahl Mindestaurch Mindestanzahl Mindestaurch Stanzahl Mindestaurch Mindestanzahl	k Bügel fok fok fyk α Sr St U2 n n Asw,min n	1.50 35.00 500.00 0.10 0.274 3.02 11 10.59 11 1.89 11	N/mm ² N/mm ² m m m cm ²
Mindestquerschnitt je Bügelschenkel Mindestquerschnitt je Bügelschenkel Faktor für Bügelant gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Charakteristische Zylinderfestigkeit Charakteristische Bewehrungsfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen Umfang des Rundschnitts Emittelte Mindestanzahl Emittelte Mindestanzahl Mindestquerschnitt je Bügelschenkel Mindestquerschnitt je Bügelschenkel Mindestanueln Mindestanzahl Mindestquerschnitt je Bügelschenkel Mindestquerschnitter Mindestquersc	k Bügel fok fyk α sr st u2 n n Asw,min n Asw,min, Bügel	1.50 35.00 500.00 0.10 0.274 3.02 111 10.59 11 1.89 11 0.17	N/mm ² N/mm ² m m m cm ² cm ²
Mindestquerschnitt je Bügelschenkel Faktor für Bügelant gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Charakteristische Bewehrungsfestigkeit Charakteristische Bewehrungsfestigkeit Radialabstand Bewehrungsreihen Tangentialabstand Bewehrungsreihen Umfang des Rundschnitts Emittelte Mindestanzahl Mindestanzahl Bügelschenkel ERech. erf. Mindestanzahl Mindestdurchstanzbewehrung Emittelte Mindestanzahl Mindestquerschnitt je Bügelschenkel Mindestquerschnitt je Bügelschenkel Mindestquerschnitt je Bügelschenkel Mittelte Mindestanzahl Mittelte Mittelte Mittelte Mittelte Mittelte Mittelte Mittelte Mittelte Mittelte Mitt	k Bügel fck fyk x sr st u2 n Asw,min n Asw,min, Bügel max Φsw	1.50 35.00 500.00 0.274 3.02 11 10.59 11 1.89 11 1.89 11 1.89 11 1.059	N/mm ² ° m m m cm ² cm ² cm ² cm
Mindestauerschnitt je Bügelschenkel Mindestguerschnitt je Bügelschenkel Faktor für Bügelart gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Charakteristische Bewehnungsfestigkeit Neigung der Durchstanzbewehnung Radialabstand Bewehnungsreihen Tangentialabstand Bewehnungsreihen Tangentialabstand Bewehnungsreihen Tumfang des Rundschnitts Emittelte Mindestanzahl Mindestanzahl Mindestanzahl Mindestdurchstanzbewehnung Emittelte Mindestanzahl Duchmesser Bügelschenkel Mittere statische Nutzhöhe Meßenbende Duchmesser Bügelschenkel Mittere statische Nutzhöhe Misone Heiter Mindestanzahl	k Bügel fok fok fyk α \$r \$t u2 n n Asw.min n Asw.min,Bügel max Φsw d	1.50 35.00 500.00 0.274 3.02 11 10.59 11 1.89 11 0.17 0.95 19.00	N/mm ² ° m m m cm ² cm ² cm cm cm
Mindestquerschnitt je Bügelschenkel Mindestquerschnitt je Bügelschenkel Faktor für Bügelant gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Charakteristische Bewehrungsfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen Tangentialabstand Bewehrungsreihen Umfang des Rundschnitts Emittelte Mindestanzahl Mindestanzahl Bügelschenkel Emittelte Mindestanzahl Mindestdurchstanzbewehrung Emittelte Mindestanzahl Mindestquerschnitt je Bügelschenkel Matigebende Durchstanzbewehrung Faktlere Durchesser Bügelschenkel Mittlere statische Nutzhöhe Maßgebende Durchstanzbewehrung/Asw Statische Greidenkel Durchnesser Bügelschenkel	k Bügel fok Fok fok Fr St v2 n N n Asw.min N Asw.min.Bügel max Φsw d	1.50 35.00 500.00 90.00 0.274 3.02 11 10.59 11 1.89 11 0.95 19.00	N/mm ² N/mm ² m m m cm ² cm ² cm cm cm
Mindestauerschnitt je Bügelschenkel Faktor für Bügelant gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Charakteristische Bewehrungsfestigkeit Charakteristische Bewehrungsfestigkeit Anagentialabstand Bewehrungsreihen Tangentialabstand Bewehrungsreihen Umfang des Rundschnitts Emittelte Mindestanzahl Mindestaurschnitt je Bügelschenkel Mindestaurschnitt je Bügelschenkel Mindestaurschnitt je Bügelschenkel Maximaler Durchmasser Bügelschenkel Mittelse statische Nutzhohe Maßgebende Durchstanzbewehrung	k Bügel fok fok fok fyk α \$r \$r \$t u2 n n Asw,min n Asw,min, Bügel max Φsw d	1.50 35.00 500.00 0.10 0.274 3.02 111 1.89 111 1.89 111 0.17 0.95 19.00	N/mm ² N/mm ² m m m cm ² cm ² cm cm cm ²

Bild 5.22: Zwischenergebnisse für zweiten Rundschnitt

Bestimmen der Anzahl der inneren Rundschnitte			
 Abstand erstes und letztes inneres Rundschnitts 	Xin	0.30	m
Max. zulässiger Abstand innere Rundschnitte	max s _r	0.14	m
 Rech. erf. Anzahl Abstände 	N dis,calc	2.08	
Gewählte Anzahl Abstände	N dis	3	
Gewahlte Anzahl Rundschnitte	n in	4	
Lage des 3. Kundschnitts		264	m
Abstand zur Lasteinleitungsfläche	lw l	0.29	m
Einwirkende Querkraft is Flächeneinheit	VEd	1,286	MN/m ²
Beiwert	β	1.10	
gemäß Gleichung (6.39) ermittelt	· · · · · · · · · · · · · · · · · · ·		
🖃 In Richtung x			
Beiwert k nach Tabelle 6.1	kx	0.60	
Ausmittenparallele Abmessung	C1	0.450	m
Ausmittensenkrechte Abmessung	C2	0.450	m Is New
Moment im Rundschnittschwerpunkt um y-Ach	MEd,y,sl	-24.46	kNm/m
Schwerpunkteabstand von Bundschnitt un	Xel	0.000	m
Einwirkende Querkraft	Ved	809.00	kN
Maßgebende Durchstanzlast	VEd	809.00	kN
Umfang des kritischen Rundschnitts	U1	3.641	m
Widerstandsmoment des Rundschnitts	W _{1,x}	1.33	m ²
In Richtung y			
Beiwert k nach Tabelle 6.1	ky	0.60	
Ausmittenparallele Abmessung	C1	0.450	m
Ausmittensenkrechte Abmessung	C2	0.450	m k Nex
Moment um die x-Achse	M Ed,X,SI	24.43	kNm/m
 Schwerpunkteabstand von Rundschnitt un 	Vsl	24.43	m
Einwirkende Querkraft	VEd	809.00	kN
Maßgebende Durchstanzlast	VEd	809.00	kN
 Umfang des kritischen Rundschnitts 	U1	3.641	m
Widerstandsmoment des Rundschnitts	W _{1.y}	1.33	m ²
Einwirkende Querkraft	VEd	809.00	kN
- Lastfall	LF	LF1	
Lastabgewandte Hache		Oberseite	
Umfang des kintischen Rundschnitts	U1	3.641	m
Abstand zur Lasteinieitungsnache	1w,1	19.00	cm
Stat. Nutzhöhe 1. Bahn	d1	20.00	cm
Stat. Nutzhöhe 2. Bahn	d ₂	18.00	cm
Durchstanzwiderstand ohne Durchstanzbewehrung			
Grunddurchstanzwiderstand nach (6.47)	V Rd,c,calc,1	0.929	MN/m ²
 Landesspezifischer Wert 	C _{Rd,c}	0.12	
Beiwert (Einfluss der Bauteilhöhe)	k	2.00	
Mittlere statische Nutzhöhe			
Stat. Nutzhöhe 1. Bahn	d1	20.00	cm
Stat. Nutznone 2. Bann	d2	18.00	cm
Milliere statische Nutzhone	u	19.00	CIII
- I Bewehrungsgrad der 1. Bahn	01	0.016	
Bewehrungsgrad der 2. Bahn	P2	0.017	
Mittlerer Längsbewehrungsgrad	ρ	0.017	
Maximal zulässiger Bewehrungsgrad	ρmax	0.020	
Charakteristische Zylinderfestigkeit	fok	35.00	N/mm ²
Landesspezifischer Wert	k1	0.10	
Spannung im Beton	σcp	0.000	MN/m ²
Mindestdurchstanzwiderstand nach (6.47)	N Cp	0.00	MN/m2
- Landesspezifischer Wert	V R0,0,0al0,2	0.586	MN/m ²
Landesspezifischer Wert	k1	0.10	
Spannung im Beton	σ _{cp}	0.000	MN/m ²
Membrankraft	N _{cp}	0.00	kN/m
Maßgebender Durchstanzwiderstand	VRd,c	0.929	MN/m ²
Statisch erforderliche Durchstanzbewehrung			
Made and Araba Made 21			cm
Mittlere statische Nutzhöhe	d	19.00	-
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestinkeit	d Sr facut of	19.00 0.10	M N/mm ²
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestigkeit El Umfang des kritischen Rundschnitts	d Sr fywd,ef	19.00 0.10 297.50 4 188	m N/mm ² m
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestigkeit E Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche	d Sr fywd,ef U1 lw,1	19.00 0.10 297.50 4.188 0.380	m N/mm ² m m
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestigkeit E Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische erforderliche Durchstanzbewehrung	d Sr fywd,ef U 1 Iw,1 Asw,stat	19.00 0.10 297.50 4.188 0.380 3.92	m N/mm ² m m cm ²
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestigkeit El Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische erforderliche Durchstanzbewehrung Mindestdurchstanzbewehrung	d Sr fywd,ef U1 Iw,1 Asw,stat	19.00 0.10 297.50 4.188 0.380 3.92	m N/mm ² m cm ²
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestigkeit Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische erforderliche Durchstanzbewehrung Mindestdurchstanzbewehrung Dindestquerschnitt je Bügelschenkel	d Sr fywd,ef U 1 Iw, 1 Asw,stat Asw,min,Bügel	19.00 0.10 297.50 4.188 0.380 3.92 0.17	m N/mm ² m cm ² cm ²
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestigkeit Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische erforderliche Durchstanzbewehrung Mindestdurchstanzbewehrung Emindestguerschnitt je Bügelschenkel Faktor für Bügelart gem. 9.4.3(2)	d Sr fywd,ef U1 Iw,1 Asw,stat Asw,stat k Bügel	19.00 0.10 297.50 4.188 0.380 3.92 0.17 1.50	m N/mm ² m cm ² cm ²
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestigkeit Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische erforderliche Durchstanzbewehrung Mindestdurchstanzbewehrung Mindestguerschnitt je Bügelschenkel Faktor für Bügelart gem. 9.4.3(2) Charakteristische Zylinderfestigkeit	d Sr fywd,ef U1 lw,1 Asw,stat Asw,min,Bügel k Bügel fok	19.00 0.10 297.50 4.188 0.380 3.92 0.17 1.50 35.00	m N/mm ² m cm ² cm ²
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestigkeit Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische erforderliche Durchstanzbewehrung Mindestdurchstanzbewehrung Mindestquerschnitt je Bügelschenkel Faktor für Bügelant gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Charakteristische Bewehrungsfestigkeit Neinung der Durchstanzbewehrung	d Sr fywd,ef U1 Iw, 1 Asw.stat Asw.min,Bügel k Bügel fok fyk r	19.00 0.10 297.50 4.188 0.380 3.92 0.17 1.50 35.00 500.00	m N/mm ² m cm ² cm ² cm ² N/mm ² v/mm ²
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestigkeit Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische erforderliche Durchstanzbewehrung Mindestdurchstanzbewehrung Mindestdurchstanzbewehrung Mindestdurchstanzbewehrung Charakteristische Zylinderfestigkeit Charakteristische Bewehrungsfestigkeit Neigung der Durchstanzbewehrung Badialabstand Bewehrungsreihen	d Sr fywd,ef U1 Iw,1 Asw.stat Asw.min,Bügel kBügel fok fyk α α Sr	19.00 0.10 297.50 4.188 0.380 3.92 0.17 1.50 35.00 500.00 90.00	m N/mm ² m cm ² cm ² N/mm ² N/mm ² °
Mittlere statische Nutzhöhe Radialabstand Bewehnungsreihen Wirksame Bewehnungsfestigkeit Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische erforderliche Durchstanzbewehnung Mindestdurchstanzbewehrung Mindestdurchstanzbewehrung Faktor für Bügelart gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen Hangertialabstand Bewehrungsreihen	d Sr fywd,ef U1 Iw,1 Asw,stat Asw,min,Bügel kBügel fok fok fyk α Sr St	19.00 0.10 297.50 4.188 0.380 0.17 1.50 35.00 500.00 90.00 0.10 0.280	m N/mm ² m cm ² cm ² N/mm ² N/mm ² ° m
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestigkeit Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische erforderliche Durchstanzbewehrung Mindestdurchstanzbewehrung Mindestquerschnitt je Bügelschenkel Faktor für Bügelart gem. 9.4.3(2) Charakteristische Bewehrungsfestigkeit Charakteristische Bewehrungsfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen Brangentialabstand Bewehrungsreihen Umfang des Rundschnitts	d Sr Fywd,ef U1 Iw,1 Asw,stat Asw,min,Bügel KBügel fok Fyk α Sr St U3	19.00 0.10 297.50 4.188 0.380 3.92 0.17 1.50 35.00 500.00 90.00 0.10 0.280 3.64	m N/mm ² m cm ² cm ² N/mm ² ° m m m
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestigkeit Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische erforderliche Durchstanzbewehrung Mindestdurchstanzbewehrung Mindestdurchstanzbewehrung Faktor für Bügelart gem. 9.4.3(2) Charaktenstische Zylinderfestigkeit Charaktenstische Zylinderfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen Umfang des Rundschnitts Emittelte Mindestanzahl	d Sr fywd,ef U1 lw,1 Asw,stat Asw,min,Bügel k Bügel fok fyk a Sr St U3 n	19.00 0.10 297.50 4.188 0.380 3.92 0.17 1.50 35.00 500.00 90.00 0.00 0.10 0.280 3.64 13	m N/mm ² m cm ² cm ² cm ² N/mm ² * m m m m
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestigkeit El Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische erforderliche Durchstanzbewehrung Mindestquerschnitt je Bügelschenkel Faktor für Bügelart gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Oharakteristische Zylinderfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen Tangentialabstand Bewehrungsreihen Umfang des Rundschnitts Emittete Mindestanzahl Ömidestanzahl Bigelschenkel	d Sr fywd,ef U1 kw.1 Asw.stat Asw.min,Bügel kBügel fok fyk fyk a x Sr St U3 n	19.00 0.10 297.50 4.188 0.380 3.92 0.17 1.50 35.00 500.00 90.00 0.10 0.280 3.64 13	m N/mm ² m cm ² cm ² N/mm ² * m m m
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestigkeit El Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische erforderliche Durchstanzbewehrung Mindestquerschnitt je Bügelschenkel Faktor für Bügelart gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen Tangentialabstand Bewehrungsreihen Umfang des Rundschnitts Emittelte Mindestanzahl Mindestanzahl Bügelschenkel	d Sr fywd,ef U1 Iw,1 Asw.stat Asw.min,Bügel k Bügel fok fyk α Sr St U3 n Cosic	19:00 0.10 297:50 4.188 0.380 3.92 0.17 1.50 35:00 500:00 90:00 0.10 0.280 3.64 13 12:78	m N/mm ² m cm ² cm ² N/mm ² ° m m m m
Mitlere statische Nutzhöhe Radialabstand Bewehnungsreihen Wirksame Bewehnungsfestigkeit Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische erforderliche Durchstanzbewehnung Mindestdurchstanzbewehrung Mindestdurchstanzbewehrung Mindestdurchstanzbewehrung Aindestquerschnitt je Bügelschenkel Faktor für Bügelart gem. 9.4.3(2) Charakteristische Bewehrungsfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehnungsreihen Umfang des Rundschnitts Emmittelte Mindestanzahl Emittelte Mindestanzahl Emittelte Mindestanzahl Ermittelte Mindestanzahl	d Sr fywd,ef U1 lw,1 Asw,stat Asw,min,Bügel kBügel fok fok fok fyk α Sr Sr St U3 n Noalo n	19.00 0.10 297.50 4.188 0.380 3.92 0.17 1.50 35.00 500.00 90.00 0.10 0.280 3.64 13 12.78 13	m N/mm ² m cm ² cm ² N/mm ² * m m m m
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestigkeit Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische erforderliche Durchstanzbewehrung Mindestdurchstanzbewehrung Mindestquerschnitt je Bügelschenkel Faktor für Bügelart gem. 9.4.3(2) Charakteristische Bewehrungsfestigkeit Charakteristische Bewehrungsfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen Tangentialabstand Bewehrungsreihen Umfang des Rundschnitts Emittelte Mindestanzahl Emittelte Mindestanzahl Emittelte Mindestanzahl Mindestanzahl Bügelschenkel Mindestanzahl	d Sr Fywd,ef U1 Iw,1 Asw,stat Asw,min,Bügel fok KBügel fok Fyk α Sr St U3 n N Calo n Asw,min	19.00 0.10 297.50 4.188 0.380 3.92 0.17 1.50 35.00 500.00 90.00 0.280 0.280 3.64 13 12.78 13 2.27	m N/mm ² m cm ² cm ² N/mm ² * m m m m m cm ²
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestigkeit Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische erforderliche Durchstanzbewehrung Mindestdurchstanzbewehrung Andestquerschnitt je Bügelschenkel Faktor für Bügelart gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Charakteristische Zylinderfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen Tangentialabstand Bewehrungsreihen Umfang des Rundschnitts Emittelte Mindestanzahl Mindestanzahl Emittelte Mindestanzahl Emittelte Mindestanzahl Emittelte Mindestanzahl Emittelte Mindestanzahl Emittelte Mindestanzahl	d Sr F fywd,ef U1 Iw,1 Asw.stat Asw.min,Bügel KBügel fok fyk α Sr St U3 n Calo n Asw.min n Asw.min n	19.00 0.10 297.50 4.188 0.380 3.92 0.17 1.50 35.00 500.00 90.00 0.10 0.280 3.64 13 12.78 13 2.27 13	m N/mm ² m m cm ² cm ² N/mm ² N/mm ² * m m m m cm ²
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestigkeit Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische erforderliche Durchstanzbewehrung Mindestdurchstanzbewehrung Faktor für Bügelart gem. 9.4.3(2) Charaktenstische Zylinderfestigkeit Charaktenstische Zylinderfestigkeit Charaktenstische Bewehrungsreihen Tangentialabstand Bewehrungsreihen Umfang des Rundschnitts Umfang des Rundschnitts Mindestanzahl Emittelte Mindestanzahl Emittelte Mindestanzahl Emittelte Mindestanzahl Emittelte Mindestanzahl Mindestdurchstanzbewehrung Emittelte Mindestanzahl Emittelte Mindestanzahl Emittelte Mindestanzahl Emittelte Mindestanzahl	d Sr Sr (ywd,ef U1 lw,1 Asw,stat Asw,min,Bügel KBügel fok KBügel fok Sr St U3 n n n n calo n Asw,min Asw,min St	19.00 0.10 297.50 4.188 0.380 3.92 0.17 1.50 35.00 90.00 90.00 0.10 0.280 3.64 13 12.78 13 2.27 13 0.17	m N/mm ² m m cm ² cm ² N/mm ² * m m m m m cm ² cm ²
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestigkeit El Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische erforderliche Durchstanzbewehrung Mindestquerschnitt je Bügelschenkel Faktor für Bügelart gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Charakteristische Zylinderfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen Umfang des Rundschnitts Emittette Mindestanzahl Emittete Mindestanzahl Emittete Mindestanzahl Emittette Mindestanzahl Mindestquerschnitt je Bügelschenkel Emittette Mindestanzahl Emittette Mindestanzahl Emittette Mindestanzahl Emittette Mindestanzahl Mindestquerschnitt je Bügelschenkel El Maximaler Durchmesser Bügelschenkel Mindestquerschnitt je Bügelschenkel Mindestquerschnitt je Bügelschenkel	d Sr fywd,ef [ywd,ef U1 lw,1 Asw.stat Asw.min,Bügel k Bügel fok fyk α sr Sr St U3 n n n Asw.min,Bügel n Asw.min n Asw.min,Bügel max Φsw d	19.00 0.10 297.50 4.188 0.380 3.92 0.17 1.50 35.00 500.00 90.00 0.10 0.280 3.64 13 12.78 13 2.27 13 0.17 1.50 1	m N/mm ² m cm ² cm ² N/mm ² * m m m m m m cm ² cm ² cm ²
Mitlere statische Nutzhöhe Radialabstand Bewehnungsreihen Wirksame Bewehnungsfestigkeit Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische erforderliche Durchstanzbewehnung Mindestdurchstanzbewehrung Mindestdurchstanzbewehrung Aindestdurchstanzbewehrung Charakteristische Zylinderfestigkeit Charakteristische Bewehrungsfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen Umfang des Rundschnitts Ermittelte Mindestanzahl Bindestdurchstanzbewehrung Fangentialabstand Bewehrungsreihen Umfang des Rundschnitts Ermittelte Mindestanzahl Bindestdurchstanzbewehrung Ermittelte Mindestanzahl Ermittelte Mindestanzahl Ermittelte Mindestanzahl Ermittelte Mindestanzahl Ermittelte Mindestanzahl Mindestdurchstanzbewehrung Ermittelte Mindestanzahl Mindestanderter Mindestanzahl Mindestanderter Mindestanzahl Mindestanderter Mindestanzahl Mindestandere Durchstanzbewehrung <	d Sr Fywd,ef U1 Iw,1 Asw,stat Asw,min,Bügel K Bügel Fok Fok Fyk α Sr Sr St U3 n N Calo n Asw,min,Bügel max Φsw d	19.00 0.10 297.50 4.188 0.380 3.92 0.17 1.50 35.00 500.00 90.00 0.280 3.64 13 12.78 13 2.27 13 0.17 0.95 19.00	m N/mm ² m cm ² cm ² N/mm ² * m m m m m cm ² cm ² cm ² cm ²
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestigkeit Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische erforderliche Durchstanzbewehrung Mindestdurchstanzbewehrung Bindestdurchstanzbewehrung Charakteristische Zylinderfestigkeit Charakteristische Bewehrungsreiten Faktor für Bügelatt gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen Umfang des Rundschnitts Emittelte Mindestanzahl Bindestanzahl Bügelschenkel Emittelte Mindestanzahl Emittelte Mindestanzahl Emittelte Mindestanzahl Emittelte Mindestanzahl Emittelte Mindestanzahl Emittelte Mindestanzahl Mindestdurchstanzbewehrung Emittelte Mindestanzahl Mindestanzahl Bindestureschnit je Bügelschenkel Mindestanzende Mindestanzende Bindestenzende Mindestanzende Bindesteruerschnittis Bügelschenkel	d Sr fywd,ef U1 Iw,1 Asw,stat Asw,min,Bügel fok fjyk α Sr Sr St U3 n n n n Asw,min,Bügel max Φsw d Asw,stat	19.00 0.10 297.50 4.188 0.380 3.92 0.17 1.50 35.00 500.00 90.00 0.280 3.64 13 12.78 13 2.27 13 0.17 0.95 19.00 3.64	m N/mm ² m m cm ² cm ² m ² N/mm ² * m m m m cm ² cm ² cm ² cm ² cm ² cm ² cm ² cm ²
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestigkeit Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische erforderliche Durchstanzbewehrung Mindestquerschnitt je Bügelschenkel Faktor für Bügelart gem. 9.4.3(2) Charakteristische Bewehrungsfestigkeit Charakteristische Bewehrungsfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen Umfang des Rundschnitts Emittelte Mindestanzahl Emittelte Mindestanzahl Emittelte Mindestanzahl Emittelte Mindestanzahl Mindestdurchstanzbewehrung Emittelte Mindestanzahl Mindestdurchstanzbewehrung Katigebende Durchstanzbewehrung Katigebende Durchstanzbewehrung Katigebende Durchstanzbewehrung Katigebende Durchstanzbewehrung Katigebende Durchstanzbewehrung Katigebende Durchstanzbewehrung Katische erforderliche Durchstanzbewehrung Katische zubzeichenkel Katische Zubzeichenk	d Sr F fywd,ef U1 Iw,1 Asw,stat Asw,min,Bügel fok Fiyk α Sr St U3 n Calo n Asw,min Asw,min St Asw,min St Asw,min St Asw,min A	19.00 0.10 297.50 4.188 0.380 3.92 0.17 1.50 35.00 500.00 90.00 0.280 0.280 3.64 13 12.78 13 2.27 13 0.17 0.95 19.00 3.92 2.27	m N/mm ² m m cm ² cm ² N/mm ² N/mm ² * m m m m m cm ² cm ² cm ² cm ² cm ² cm ² cm ²
Mittlere statische Nutzhöhe Radialabstand Bewehrungsreihen Wirksame Bewehrungsfestigkeit Umfang des kritischen Rundschnitts Abstand zur Lasteinleitungsfläche Statische eforderliche Durchstanzbewehrung Mindestquerschnitt je Bügelschenkel Faktor für Bügelart gem. 9.4.3(2) Charakteristische Zylinderfestigkeit Charakteristische Bewehrungsfestigkeit Neigung der Durchstanzbewehrung Radialabstand Bewehrungsreihen Tangentialabstand Bewehrungsreihen Umfang des Rundschnitts Emittelte Mindestanzahl Mindestquerschnitt je Bügelschenkel Bindestdurchstanzbewehrung Emittelte Mindestanzahl Mindestquerschnitt je Bügelschenkel Mitteler Statische Vutzhöhe Maßgebende Durchstanzbewehrung Maßgebende Durchstanzbewehrung	d Sr Fywd,ef U1 Iw,1 Asw,stat Asw,stat Asw,min,Bügel fok KBügel fok fok Sr St U3 n Calo n Asw,min,Bügel max Φsw d Asw,stat Asw,stat Asw,min	19.00 0.10 297.50 4.188 0.380 0.17 1.50 35.00 500.00 90.00 0.10 0.280 3.64 13 2.27 13 2.27 13 0.17 0.95 19.00 3.92	m N/mm ² m m cm ² cm ² N/mm ² N/mm ² m m m m m m cm ² cm ² cm ² cm ² cm ² cm ² cm ²

Bild 5.23: Zwischenergebnisse für dritten Rundschnitt

∠ Dlubal

□ Bestimmen der Anzahl der inneren Rundschnitte □ Abstand erstes und letztes inneres Rundschnitts x in 0.30 r □ Max. zulässiger Abstand innere Rundschnitts x in 0.30 r □ Max. zulässiger Abstand innere Rundschnitte max s r 0.14 r □ Rech. eff. Anzahl Abstände n dis.calo 2.08 □ Gewählte Anzahl Abstände n dis 3 □ Gewählte Anzahl Rundschnitte n in 4 □ Lage des 4. Rundschnitts u 4.26 □ Umfang des Rundschnitts u 4.26 □ Abstand zur Lasteinleitungsfläche l w 0.39 r □ Einwirkende Querkraft je Flächeneinheit v Ed 1.099	
Abstand erstes und letztes inneres Rundschnitts xin 0.30 Max. zulässiger Abstand innere Rundschnitte max sr 0.14 Rech. ef. Anzahl Abstände n dis.cale 2.08 Gewählte Anzahl Rundschnitte n dis. 3 Gewählte Anzahl Rundschnitte n in 4 Lage des 4. Rundschnitts	
Imax. Zulassiger Austantu innere Hondschnitte Imax sr 0.141 Rech. ef. Anzahl Abstände n dis.cale 2.08 Gewählte Anzahl Abstände n dis. 3 Gewählte Anzahl Rundschnitte n in 4 Lage des 4. Rundschnitts u 4.26 Umfang des Rundschnitts u 4.26 Abstand zur Lasteinleitungsfläche I.w 0.39 Einwirkende Querkraft je Flächeneinheit v Ed 1.099	n
Gewählte Anzahl Abstände n dis 2.00 Gewählte Anzahl Rundschnitte n dis 3 Gewählte Anzahl Rundschnitte n in 4 Lage des 4. Rundschnitts u 4.26 Umfang des Rundschnitts u 4.26 Abstand zur Lasteinleitungsfläche Iw 0.39 Einwirkende Querkraft je Flächeneinheit v Ed 1.099	n
Gewählte Anzahl Rundschnitte n in 4 □Lage des 4. Rundschnitts	
Lage des 4. Rundschnitts Umfang des Rundschnitts Umfang des Rundschnitts Abstand zur Lasteinleitungsfläche Iw D.39 Einwirkende Querkraft je Rächeneinheit v Ed 1.099	
Umfang des Rundschnitts u 4.26 Abstand zur Lasteinleitungsfläche I _w 0.39 ⊟ Einwirkende Querkraft je Rächeneinheit v _{Ed} 1.099	
Abstand zur Lasteinleitungsfläche I _w 0.39 r Einwirkende Querkraft je Flächeneinheit v _{Ed} 1.099	m
El Einwirkende Querkraft je Flacheneinheit VEd 1.099	n Maria 2
E Beiwert 8 110	MIN/m~
- gemäß Gleichung (6.39) emittelt	
- In Richtung x	
Beiwert k nach Tabelle 6.1 kx 0.60	
Ausmittenparallele Abmessung c1 0.450 r	n
Ausmittensenkrechte Abmessung c2 0.450 r	n
Moment im Rundschnittschwerpunkt um y-Aci Mied, y, si -24.46	civm kNm/m
Schwerpunkteabstand von Rundschnitt un x-i	m
Einwirkende Querkraft VEd 809.00	кN
Maßgebende Durchstanzlast VEd 809.00	кN
Umfang des kritischen Rundschnitts un 4.263 r	n
Widerstandsmoment des Rundschnitts W 1,x 1.83 m	n²
In Richard y	
Ausmittenparallele Abmessung C1 0450	m
Ausmittensenkrechte Abmessung c2 0.450	 m
Moment im Rundschnittschwerpunkt um x-Acl MEd,x,sl 24.43	кNm
Moment um die x-Achse M _x 24.43	kNm∕m
Schwerpunkteabstand von Rundschnitt un ysi 0.000 r	n
Einwirkende Querkraft VEd 809.00	cN
Malsgebende Durchstanzlast VEd 809.00 H	CN m
Widerstandsmoment des Rundschnitts W1 v 183	m ²
-⊡ Einwirkende Querkraft VEd 809.00	kN
– Lastfall LF LF1	
Lastabgewandte Fläche Oberseite	
□ Umfang des kritischen Rundschnitts un 4.263 r	n
Abstand zur Lasteinleitungsfläche I _W ,1 0.392 r	n
Stat Nutzhöhe 1 Bahn d 19.00	cm
Stat. Nutzhöhe 2. Bahn d2 18.00	cm
Durchstanzwiderstand ohne Durchstanzbewehrung	
Grunddurchstanzwiderstand nach (6.47) v Rd,c,calc,1 0.929	MN/m ²
Landesspezifischer Wert CRd,c 0.12	
Beiwert (Einfluss der Bauteilhohe) k 2.00	
Stat Nutzhöhe 1 Bahn di 20.00 (cm
Stat. Nutzhohe 2. Bahn da da	cm
Mittlere statische Nutzhöhe d 19.00 d	cm
Mittlerer Längsbewehrungsgrad	
⊕ Bewehrungsgrad der 1. Bahn ρ 1 0.016	
H Bewehrungsgrad der 2. Bahn ρ ₂ 0.017	
Mitterer Langsbeweinungsgrad p 0.017	
Charakteristische Zylinderfestigkeit fok 35.00	N/mm ²
Landesspezifischer Wert k1 0.10	
E Spannung im Beton 0.000	MN/m ²
Membrankraft N _{cp} 0.00	cN/m
Indestdurchstanzwiderstand nach (6.4/) VRd,c.calc.2 0.586	MN/m ²
Landesspezifischer Weit Vmin 0.300 I	MIN/111-
Spannung im Beton Grop 0.000	MN/m ²
Membrankraft N cp 0.00	κN/m
Maßgebender Durchstanzwiderstand v Rd,c 0.929	MN/m ²
Statisch erforderliche Durchstanzbewehrung	
Initiale statische Nutzhone d 19.00 d 19.00 d	om m
Wirksame Bewehrungsfestigkeit fruur of 297.50	" N/mm ²
□ Umfang des kritischen Rundschnitts u1 4.188	m
Abstand zur Lasteinleitungsfläche I _{w,1} 0.380 r	m
Statische erforderliche Durchstanzbewehrung Asw,stat 3.92	om ²
⊡ Mindestdurchstanzbewehrung	
☐ Mindestquerschnitt je Bugelschenkel Asw,min,Bügel 0.22 (cm 4
	N/mm2
Faktor für Bügelart gem. 9.4.3(2) K Bügel 1.50 Charakteristische Zulinderfestigkeit E-u. 25.00	N/mm ²
Paktor fur bugelant gem. 3.4.3(2) K Bügel 1.50 Charakteristische Zylinderfestigkeit fok 35.00 Charakteristische Bewehrungsfestigkeit fvk 500.00	•
- Faktor fur Bugelar gem. 3.4.3(z) K Bugel 1.50 - Charakteristische Zylinderfestigkeit f _{ck} 35.00 - Charakteristische Bewehrungsfestigkeit f _{yk} 500.00 - Neigung der Durchstanzbewehrung α 90.00	m
- Faktor fur Bugelar gem. 3.4.2(2) K Bugel 1.50 - Charakteristische Zylinderfestigkeit f _{ck} 35.00 - Charakteristische Bewehrungsfestigkeit f _{yk} 500.00 - Neigung der Durchstanzbewehrung α 90.00 - Radialabstand Bewehrungsreihen s _r 0.10	m
- Faktor fur Bugelar gem. 34.3(z) K Bugel 1.50 - Charakteristische Zylinderfestigkeit f _{ck} 35.00 - Charakteristische Bewehrungsfestigkeit f _{yk} 500.00 - Neigung der Durchstanzbewehrung α 90.00 - Radialabstand Bewehrungsreihen sr 0.10 - □ Tangentialabstand Bewehrungsreihen st 0.355	
— Faktor fur Bugelar gem. 34,3(2) K Bugel 1.50 — Charakteristische Zylinderfestigkeit f _{ck} 35.00 — Charakteristische Bewehrungsfestigkeit f _{yk} 500.00 — Neigung der Durchstanzbewehrung α 90.00 — Radialabstand Bewehrungsreihen sr 0.10 — Tangentialabstand Bewehrungsreihen st 0.355 — Umfang des Rundschnitts u4 4.26	m
- Faktor fur Bugelart gem. 34, 3(2) K Bugel 1.50 - Charakteristische Zinidenfestigkeit f ok 35,00 - Charakteristische Bewehrungefestigkeit f yk 500,00 - Neigung der Durchstanzbewehrung α 90,00 - Radialabstand Bewehrungsreihen s r 0.10 - El Tangetrialabstand Bewehrungsreihen s t 0.355 - Umfang des Rundschnitts u 4 4.26 - Emtitelte Mindestanzahl n 12 - Entitelte Abridentare in Providentaria 0.12	m
→ Faktor fur Bugelart gem. 34.3(2) K Bugel 1.50 Charaktenstische Zylinderfestigkeit fok 35.00 Charaktenstische Bewehnungsfestigkeit fyk 500.00 Neigung der Durchstanzbewehnung α 90.00 Radialabstand Bewehnungsreihen sr 0.10 □ Tangernialabstand Bewehnungsreihen st 0.355 □ Umfang des Rundschnitts u.4 4.26 □ Emtiteite Mindestanzahl n 12 □ Mindestanzahl Bügelschenkel 11.22	m
→ Faktor fur Bugelart gem. 34, 3(2) K Bugel 1.50 → Charaktenstische Zylinderfestigkeit f ok 35.00 → Charaktenstische Bewehrungsfestigkeit f yk 500.00 → Neigung der Durchstanzbewehrung α 90.00 → Radialabstand Bewehrungsreihen s r 0.101 → Tangentialabstand Bewehrungsreihen s t 0.355 → Umfang des Rundschnitts u 4 4.26 n → Emittelte Mindestanzahl n 12 → Mindestanzahl n 12 → Bech. eft. Mindestanzahl n calc 11.22 → Emittelte Mindestanzahl n 12	m
→ Faktor fur Bugelart gem. 34, 3(2) K Bugel 1.50 → Charakteristische Zylinderfestigkeit f ok 35.00 → Charakteristische Bewehrungsfestigkeit f yk 500.00 → Neigung der Durchstanzbewehrung α 90.00 → Radialabstand Bewehrungsreihen s r 0.101 → Tangentialabstand Bewehrungsreihen s t 0.355 → Umfang des Rundschnitts u 4 4.266 → Ermittelte Mindestanzahl n 12 → Mindestanzahl Bügelschenkel ± ± → Ermittelte Mindestanzahl n 12.22	m cm 2
- Faktor fur Bugelar gem. 34, 3(2) K Bugel 1.50 - Charakteristische Zylinderfestigkeit f ok 35.00 - Charakteristische Bewehrungsfestigkeit f yk 500.00 - Neigung der Durchstanzbewehrung α 90.00 - Radialabstand Bewehrungsreihen s r 0.10 - E Tangentialabstand Bewehrungsreihen s t 0.355 - Umfang des Rundschnitts u 4 4.26 f - Emittelte Mindestanzahl n 12 - Mindestanzahl Bügelschenkel	m cm ²
- Faktor fur Bugelar gem. 34, 3(2) K Bugel 1.50 - Charakteristische Zylinderfestigkeit f ok 35.00 - Charakteristische Bewehnungsfestigkeit f yk 500.00 - Neigung der Durchstanzbewehrung α 90.00 - Radialabstand Bewehnungsreihen s r 0.10 r - Tangentialabstand Bewehnungsreihen s t 0.355 r - Umfang des Rundschnitts u 4 4.26 r - Emittelte Mindestanzahl n 12 - Mindestanzahl n 12 - Emittelte Mindestanzahl n 12 - Emittelte Mindestanzahl n 12 - Emittelte Mindestanzahl n 12 - Mindesturchstanzbewennung A sw.min 2.66 d - Emittelte Mindestanzahl n 12 - Mindesturchstanzbewennung A sw.min, Bügel 0.22 d	m cm² cm²
→ Faktor fur Bugelart gem. 34, 3(2) K Bugel 1.50 → Charakteristische Zinidenfestigkeit f ok 35,00 → Charakteristische Zinidenfestigkeit f ok 35,00 → Neigung der Durchstanzbewehrung α 90,00 → Radialabstand Bewehrungsreihen s r 0.10 → Tangentialabstand Bewehrungsreihen s r 0.355 → Umfang des Rundschnitts u.4 4.26 → Emittelte Mindestanzahl n 12 → Mindestanzahl n 12 → Mindestanzahl n 12 → Emittelte Mindestanzahl n 12 → Mindestdurchstanzbewehrung Asw.min. 24,60 22,00 → Emittelte Mindestanzahl n 12 → Minde	m cm ² cm ² cm
→ Faktor fur Bugelart gem. 34, 3(2) K Bugel 1.50 → Charakteristische Zinderfestigkeit f ok 35,00 → Charakteristische Zinderfestigkeit f yk 500,00 → Neigung der Durchstanzbewehrung α 90,00 → Radialabstand Bewehrungsreihen s r 0.10 → Tangentialabstand Bewehrungsreihen s r 0.355 → Umfang des Rundschnitts u.4 4.26 → Emtitelte Mindestanzahl n 12 → Mindestanzahl Bügelschenkel 11.22 → Emtitelte Mindestanzahl n 12 → Mindestanzahl n 12	m cm ² cm ² cm cm
→ Faktor fur Bugelart gem. 34, 3(2) K Bugel 1.50 Charaktenstische Zylinderfestigkeit f ok 35.00 Charaktenstische Zwinderfestigkeit f ok 35.00 Charaktenstische Bewehrungsfestigkeit f yk 500.00 Neigung der Durchstanzbewehrung α 90.00 Radialabstand Bewehrungsreihen s r 0.10 Tangetnialabstand Bewehrungsreihen s t 0.355 Umfang des Rundschnitts u 4 4.26 Emitteite Mindestanzahl n 12 Emitteite Mindestanzahl n 12 Emitteite Mindestanzahl n 122 Emitteite Mindestanzahl n 12 Mindestdurchstanzbewehrung Asw.min 2.66 Emitteite Mindestanzahl n 12 Mindestduerschnit je Bügelschenkel Asw.min,Bügel 0.22 Mindestaugerschnit je Bügelschenkel max Φ _{Sw} 0.95 Mittere statische Mutzhöhe d 19.00 5 Mäßgebende Durchstanzbewehrung/Asw Statische efrörderliche Durchstanzbewehrung/Asw 3 420 <td>m cm² cm² cm cm cm</td>	m cm ² cm ² cm cm cm
→ Faktor fur Bugelart gem. 34, 3(2) K Bugel 1.50 Charaktenstische Zylinderfestigkeit fok 35.00 Charaktenstische Bewehrungsfestigkeit fok 35.00 Neigung der Durchstanzbewehrung α 90.00 Radialabstand Bewehrungsreihen sr 0.10 □ Tangentialabstand Bewehrungsreihen sr 0.355 □ Umfang des Rundschnitts u.4 4.256 □ Emtitette Mindestanzahl n 12 □ Mindestquerschnitt je Bügelschenkel 11.22 □ Mindestquerschnitt je Bügelschenkel Asw.min 2.66 □ Mindestquerschnitt je Bügelschenkel Asw.min, Bügel 0.222 □ Maximaler Durchmesser Bügelschenkel max Φ _{Sw} 0.355 □ Maßgebende Durchstanzbewehrung/Asw Statische erforderliche Durchstanzbew	m cm ² cm ² cm cm cm cm cm ² cm ² cm ²
→ Faktor fur Bugelart gem. 34, 3(2) K Bugel 1.50 Charaktenstische Zylinderfestigkeit f ok 35.00 Charaktenstische Bewehrungsfestigkeit f yk 500.00 Neigung der Durchstanzbewehrung α 90.00 Radialabstand Bewehrungsreihen s r 0.100 □ Tangentialabstand Bewehrungsreihen s t 0.355 □ Umfang des Rundschnitts u 4 4.256 □ Emittelte Mindestanzahl n 12 □ Mindestanzahl Bugelschenkel 11.22 □ Emittelte Mindestanzahl n 12 □	m cm ² cm ² cm cm cm cm cm ² cm ² cm ² cm ² cm ² cm ² cm ²

Grafik

5 Beispiel: Punktgestützte Platte

Über die Schaltfläche [Grafik] sind die Ergebnisse des Moduls RF-STANZ Pro im Arbeitsfenster von RFEM darstellbar.

5

Max a-s,w: 9.80, Min a-s,w: 0.00 cm^2

Bild 5.26: Darstellung der Durchstanzbewehrung an den Rundschnitten

Q

Literatur

- [1] EN 1992-1-1: Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1992-1-1:2004/A1:2014. Beuth Verlag GmbH, Berlin, 2015.
- [2] DIN EN 1992-1-1: Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1992-1-1:2004 + AC:2010. Beuth Verlag GmbH, Berlin, 2010.
- [3] Deutscher Beton- und Bautechnik-Verein E.V.: Beispiele zur Bemessung nach Eurocode 2 Band 1: Hochbau. Ernst & Sohn, Berlin, 2011, 1. korrigierter Nachdruck.
- [4] SCHNEIDER: Bautabellen für Ingenieure. Bundesanzeiger Verlag, Köln, 22. Auflage, 2016.

⊿ ■ Dlubal

Index

A

Äußerer Rundschnitt	
Ausdruckprotokoll	78,79
Außergewöhnlich	

В	
Basisangaben	42
Bauteil	58, 65
Beanspruchbarkeit	65
Beanspruchung	. 20, 36, 65
Beidseitige Lastwirkung	
Beiwert β	21
Bemessungsfall	. 41, 71, 72
Bemessungssituation	45
Beton	46, 47
Betondeckung	
Betonstahl	46
Bewehrung	68
Bewehrungsbahn	51, 68
Bewehrungsreihe	25, 39
Bewehrungsrichtung	51, 68

D

Dezimalstellen73
Dicke
Drucken
Druckkraft
Durchstanzbewehrung 18, 23, 24, 27, 37, 53, 68
Durchstanzform
Ourchstanzknoten
Durchstanzlast
Durchstanznachweis
Durchstanzwiderstand18, 19, 23, 24, 26, 37, 38,
57

Е

Eckstütze	8
Einheiten	3
EN 1992-1-1	4
Ergebniskombination 12, 13, 44	4
Ergebnisse-Navigator	4
Export	7

F

FE-Netz	
Fläche	
Flächenschnittgröße	
Freier Rand	
Fundament	22, 23, 58

G

Grafik		4
Grafikausdruck	7	9

B

н

Halfen	 		 			 			 			53
Hauptlast						 			 			33
HDB										. 5	53,	54

I

Innerer Rundschnitt	28,	60
Installation		. 3

Κ

Knoten	42, 52, 65, 68
Knotenlager	6
Knotenlast	
Kommentar	
Kritischer Rundschnitt 15, 18, 19, 2	26, 27, 36, 63,
67	

L

Längsbewehrung 23, 25, 38, 51, 61, 68
Lage
Lasteinleitung
Lasteinleitungsfläche
Lasterhöhungsfaktor59, 64
Lastfall
Lastkombination
Linienlast
Lokales Achsensystem

М

Masken	. 41
Material	46
Materialbibliothek	. 47
Mindestbewehrung	26
Mindestmomente	4, 60

Ν

Nachweiskriterium	65
Nationaler Anhang	43
NA	43
Nebenlast	33
Norm	43, 53
Normalkraft	62

0

Oberseite			
-----------	--	--	--

Ρ

Panel	
Parameter	
Platte	

R

Randstütze	. 58
RF-STANZ Pro-Fall	,74
RFEM-Arbeitsfenster	. 74
Rundschnitt), 69

S

Schrägstäbe	39, 53
Schubkraft	58
Schubkraftverlauf 15, 7	16,64
Sichtbarkeiten	76
Stabnormalkraft	13
Ständig und vorübergehend	45
Start des Programms	40
Stütze	13
Stützenkopfverstärkung	56, 77

B

Verankerungslänge	62
Verlegebreite	62
Vollplastische Schubspannungsverteilung . 2	21,
59	
Vorzeichen	. 9
147	

W

Wandecke	16, 64	1
Wandende	15 , 64	1

Ζ

Zugkraft	 • • •	• •	• • •	• •	• •	• •	• • •	62
Zwischenergebnisse	 	•••					65,	69