谢列梅捷沃机场钢结构屋盖以及人行桥,俄罗斯莫斯科

客户项目

2011年07月6日

俄罗斯 RSTAB 钢结构

结构设计 Structural Analysis & Design
B+G Ingenieure Bollinger und Grohmann GmbH
Frankfurt am Main, Germany
www.bollinger-grohmann.com
建筑学 Dmitry Pshenichnikov
Moscow, Russia
建造 Main Contractor for Projecting Roofs and Roofing
Arnold AG
Friedrichsdorf, Germany
www.arnold.de
 
Steel Construction for Main Arch
Heinrich Lamparter Stahlbau GmbH & Co. KG
Kassel / Kaufungen, Germany
stahl-und-glas.de
 
Steel Construction for Bridge
Müller Offenburg GmbH und Co. KG
Offenburg, Germany
www.mueller-offenburg.de

Steel Structure Producer
Stalkon
Moscow, Russia
www.stalkon.ru
投资商 Aeroflot
Moscow, Russia

Because of modernization and increased passenger capacity, the third terminal was built at the Sheremetyevo International Airport.

The Dlubal Software customer B+G Ingenieure Bollinger und Grohmann GmbH from Frankfurt am Main, Germany, was responsible under the direction of the Arnold AG for the planning of several projecting roofs and a pedestrian bridge connecting a car park and the terminal.

A special challenge for all companies involved was the three-dimensional planning required to perform the project. Large‑area accumulations of snow had to be taken into account when designing the steel construction. The basic snow load of 1.26 kN/m² for Moscow was multiplied with the corresponding factors and resulted in a snow load of 8.60 kN/m² to be applied.

Bridge

The architect's 3D model consisted of a bow (Main Arch) with long span lengths, stretched from the terminal to the parking deck, and a bridge suspended from the arc. Though the bridge got its own arched supporting structure, due to various deformations of single structural components stressed by load, the vertical cables were used additionally.

Main Arch

The Main Arch is an arch structure with supporting cables, starting from the dome-shaped structure in the center of the terminal, running over the main entrance and ending at the car park, creating an entrance hall with span lengths of 56 m x 43 m and bridging a distance of 88 m to the parking deck.

The principal supporting structure consists of 4‑chord trusses where cross beams in the form of fish-bellied girders are arranged between them.

It was required that the main arch must have a high flexural resistance because of high eccentric snow loads. The high flexural stiffness, however, resulted in unintentional excessive tensile forces within the bottom chord of the 4‑chord trusses. Therefore, the cables supporting the structure were prestressed with such a high force that the tension forces are overpressed. By prestressing the cables during the assembly, stresses were generated in the upper chord which were reduced only by applying the load of the finishings.

结构设计使用的软件

联系我们

联系 Dlubal

如果您有任何关于我们产品的问题或者建议,请联系我们的技术支持或者搜索我们的问题和解答 (FAQs)。

+49 9673 9203 0

(可要求接中文热线)

info@dlubal.com

新闻简报

订阅相关新闻简讯,并获取有关实用的建议、计划举办的活动以及独家促销和优惠卷的信息。