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0021 – Plastic Bending with Zero Tensile Strength

Description

A cantilever is fully fixed on the left end (x = 0) and subjected to a transverse force F and an axial
force Fa on the right end according to the Figure 1. The tensile strength is zero and the behaviour
in the compression remains elastic. The problem is described by the following set of parameters.

Material Elastic-Plastic Modulus of
Elasticity

E 210000.000 MPa

Poisson's
Ratio

𝜈 0.000 −

Shear
Modulus

G 105000.000 MPa

Tensile Plastic
Strength

ft 0.000 MPa

Geometry Cantilever Length L 2.000 m

Width w 0.005 m

Thickness t 0.005 m

Load Transverse
Force

F 4.000 N

Axial Force Fa 5000.000 N

Small deformations are considered and the self-weight is neglected in this example. Determine
the maximum deflection uz,max.
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Figure 1: Problem sketch

Analytical Solution

The bending momentM for the cantilever under transverse force F is defined as

M = −F(L − x) (21 – 1)
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Linear Analysis

Considering linear analysis (only elasticity) the maximum deflection of the structure can be calcu-
lated as follows:

uz,max =
FL3

3EIy
≈ 0.975 m (21 – 2)

Nonlinear Analysis

The transverse force F together with the axial force Fa causes the elastic-plastic of the cantilever
according to the Figure 1. The elastic-plastic zone length is described by the parameter xp. The
stress 𝜎x is composed of the bending stress 𝜎b and the compressive stress 𝜎c according to the
Figure 2 and it is defined according to the following formula

𝜎x(x, z) = −𝜅(x)E(z − z0(x)) (21 – 3)

where 𝜅(x) is the curvature defined as 𝜅(x) = d2uz/dx2 [1] and the parameter z0(x) is defined so
that 𝜎x(x, z0) = 0, see Figure 2. The first yield occurs, when the bending stress on the top surface
on the fixed end reaches the value of the compressive stress.

M(0)
Iy

t
2

=
Fa
A

(21 – 4)

where Iy is the quadratic moment of the cross-section to the y-axis1 and A is the area of the
cross-section2. The transverse force results F = 2.083̄ N. Thus, the the cantilever under transverse
force F = 4.000 N is in elastic-plastic state.
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Figure 2: Stress distribution

1 Iy = 1
12wt

3 = 52.083̄ mm4

2 A = wt = 25.000 mm2
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In the elastic-plastic zone (x < xp) the equilibrium between bending moments and axial forces
has to be satisfied.

Mep =

t/2

∫
z0

−𝜅pE(z − z0)zw dz = M (21 – 5)

Nep =

t/2

∫
z0

−𝜅pE(z − z0)w dz = −Fa (21 – 6)

Solving equations (21 – 5) and (21 – 6) the curvature in the elastic-plastic zone 𝜅p and the
parameter z0 results as follows.

𝜅p(x) =
8F3a

9Ew(Fat + 2M)2
(21 – 7)

z0(x) =
t
2

−
3
2
Fat + 2M

Fa
(21 – 8)

The elastic-plastic zone length xp can be obtained from the equation (21 – 8) under the condition
z0(xp) = −t/2.

xp = L −
tFa
6F

≈ 958.333 mm (21 – 9)

The curvature 𝜅e in the elastic zone (x > xp) is described by the Bernoulli-Euler formula

𝜅e = −
M
EIy

(21 – 10)

The maximum deflection uz,max can be finally calculated according to the following formula

uz,max =

xp

∫
0

𝜅p(L − x)dx +
L

∫
xp

𝜅e(L − x)dx ≈ 1.232 m (21 – 11)

RFEM 5 Settings

• Modeled in RFEM 5.16.01
• The element size is lFE = 0.020 m
• Geometrically linear analysis is considered
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• The number of increments is 10
• Shear stiffness of the members is neglected

Results

Structure File Entity Material model Hypothesis

0021.01 Member
Isotropic Nonlinear

Elastic 1D
-

0021.02 Plate Isotropic Masonry 2D -

0021.03 Plate Nonlinear Elastic 2D/3D Mohr-Coulomb

0021.04 Plate Nonlinear Elastic 2D/3D Drucker-Prager

0021.05 Plate Isotropic Plastic 2D/3D Mohr-Coulomb

0021.06 Plate Isotropic Plastic 2D/3D Drucker-Prager

Model Analytical Solution RFEM 5

uz,max

[m]
uz,max

[m]
Ratio
[-]

Isotropic Nonlinear
Elastic 1D

1.232

1.230 0.998

Isotropic Masonry 2D 1.237 1.004

Nonlinear Elastic
2D/3D, Mohr-Coulomb

1.237 1.004

Nonlinear Elastic
2D/3D, Drucker-Prager

1.237 1.004

Isotropic Plastic
2D/3D, Mohr-Coulomb

1.237 1.004

Isotropic Plastic
2D/3D, Drucker-Prager

1.236 1.003
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