Program: RFEM 5

Category: Geometrically Linear Analysis, Isotropic Nonlinear Elasticity, Isotropic Plas-
ticity, Isotropic Masonry, Member, Plate

Verification Example: 0021 - Plastic Bending with Zero Tensile Strength

0021 - Plastic Bending with Zero Tensile Strength

Description

A cantilever is fully fixed on the left end (x = 0) and subjected to a transverse force F and an axial
force F, on the right end according to the Figure 1. The tensile strength is zero and the behaviour
in the compression remains elastic. The problem is described by the following set of parameters.

Material Elastic-Plastic | Modul f

ateria astic-Plastic o fJ'uso £ 210000.000 | MPa
Elasticity
P0|§sons 5 0.000 | —
Ratio
Shear

G 105000.000 | MP

Modulus @
Tensile Plasti
ensile Plastic f 0.000 | MPa
Strength

Geometry Cantilever Length L 2.000 [ m
Width w 0.005 | m
Thickness t 0.005 | m

Load Transverse £ 4000 | N
Force
Axial Force F, 5000.000 | N

Small deformations are considered and the self-weight is neglected in this example. Determine

the maximum deflection u, ..
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Figure 1: Problem sketch

Analytical Solution

The bending moment M for the cantilever under transverse force F is defined as

M= —F(L—x) (21-1)
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Verification Example: 0021 - Plastic Bending with Zero Tensile Strength
Linear Analysis

Considering linear analysis (only elasticity) the maximum deflection of the structure can be calcu-
lated as follows:

FL3
Uy max = 357 ~ 0975 M (21-2)

Nonlinear Analysis

The transverse force F together with the axial force F, causes the elastic-plastic of the cantilever
according to the Figure 1. The elastic-plastic zone length is described by the parameter x,,. The
stress o, is composed of the bending stress o, and the compressive stress o, according to the
Figure 2 and it is defined according to the following formula

0,(%,2) = —k(X)E(z — z,(X)) (21-3)

where () is the curvature defined as (x) = d’u,/dx? [1] and the parameter z, (x) is defined so
that o, (x,z,) = 0, see Figure 2. The first yield occurs, when the bending stress on the top surface
on the fixed end reaches the value of the compressive stress.
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e 21-4
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where |, is the quadratic moment of the cross-section to the y-axis' and A is the area of the
cross-section?. The transverse force results F = 2.083 N. Thus, the the cantilever under transverse
force F = 4.000 N is in elastic-plastic state.
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Verification Example: 0021 - Plastic Bending with Zero Tensile Strength

In the elastic-plastic zone (x < x,,) the equilibrium between bending moments and axial forces
has to be satisfied.

t/2
My, = / oz — zg)zwdz = M (21-5)
20
t/2
N, = / oz — z)wdz = —F, 21-6)

2y

Solving equations (21 - 5) and (21 - 6) the curvature in the elastic-plastic zone , and the
parameter z, results as follows.

8F3
()= ———a 21-7)
P 9EW(F,t + 2M)2
t 3Ft+2M
ZO(X):E—EaF— (21—8)

a

The elastic-plastic zone length x,, can be obtained from the equation (21 - 8) under the condition
Zo(x,) = —t/2.

tF
X, =L— 6—; ~ 958.333 mm (21-9)

The curvature £, in the elastic zone (x > x,) is described by the Bernoulli-Euler formula

M
= 21-10

The maximum deflection u, ,,, can be finally calculated according to the following formula

X, n
Uz max = / ’ip(L —X)dX+/ Ke(L —Xx)dx a2 1.232 m 21-11)

0 Xp

RFEM 5 Settings

e Modeled in RFEM 5.16.01
e The element sizeis [,y = 0.020 m
e Geometrically linear analysis is considered
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Verification Example: 0021 - Plastic Bending with Zero Tensile Strength

e The number of increments is 10
e Shear stiffness of the members is neglected

Results
Structure File Entity Material model Hypothesis
0021.01 Member Isotropic !\lonlmear i
Elastic 1D
0021.02 Plate Isotropic Masonry 2D -
0021.03 Plate Nonlinear Elastic 2D/3D Mohr-Coulomb
0021.04 Plate Nonlinear Elastic 2D/3D Drucker-Prager
0021.05 Plate Isotropic Plastic 2D/3D Mohr-Coulomb
0021.06 Plate Isotropic Plastic 2D/3D Drucker-Prager
Model Analytical Solution RFEM 5
uz,max uz,max Ratio
[m] [m] [-]
Isotropic Nonlinear
. 1.230 0.998
Elastic 1D
Isotropic Masonry 2D 1.237 1.004
Nonlinear Elastic
2D/3D, Mohr-Coulomb 1237 1.004
Nonlinear Elastic 1.232 1937 1.004
2D/3D, Drucker-Prager ’ )
Isotropic Plastic
1.237 1.004
2D/3D, Mohr-Coulomb
Isotropic Plastic
1.236 1.003
2D/3D, Drucker-Prager
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