Carification

Program: RFEM 5, RSTAB 8

Category: Large Deformation Analysis, Isotropic Linear Elasticity, Member

Verification Example: 0043 – Cantilever Bend to Form a Circle

0043 – Cantilever Bend to Form a Circle

Description

Determine the bending moment M, which acts at the free end of the cantilever and which bends the member to a circular shape. Neglecting beam's self weight, assuming the large deformation theory and loading the cantilever with this particular M, check the maximum deflections $u_{X,\max}$ and $u_{Z,\max}$.

Material	Steel	Modulus of Elasticity	Ε	210.000	GPa
		Shear Modulus	G	81.000	GPa
Geometry	Beam	Length	L	4000.000	mm
		Diameter	d	42.400	mm
		Wall Thickness	t	4.000	mm

Analytical Solution

The second moment of inertia around y axis I_y equals to (see **Figure 1**):

$$I_y = \frac{\pi \left[d^4 - (d - 2t)^4 \right]}{64} \approx 89908.5 \,\mathrm{mm}^4 \tag{43-1}$$

A beam in the large deformation analysis is described by the nonlinear differential equation

$$\kappa(\mathbf{x}) = \frac{u_{\mathbf{z}}''(\mathbf{x})}{[1 + (u_{\mathbf{z}}'(\mathbf{x}))^2]^{\frac{3}{2}}} = -\frac{M}{El_y}$$
(43 - 2)

which is an equation difficult to solve in general. However, the term on the right-hand side is constant and consequently the left-hand side, which is nothing else then the beam curvature κ , is constant also. The only curve which has constant curvature is a circle, therefore, the solution to this problem is a circle arc of radius *R*. We get

Verification Example: 0043 – Cantilever Bend to Form a Circle

$$u_{\rm x max} = R\sin\alpha - L \tag{43-3}$$

$$u_{z,\max} = R(1 - \cos \alpha) \tag{43-4}$$

where the radius of the circular arc equals to

$$R = \left|\frac{1}{\kappa(x)}\right| = \frac{EI_y}{M} \tag{43-5}$$

The angle of the circular arc equals to $\alpha = \frac{L}{R}$. In our case $\alpha = 2\pi$, which yields

$$R = \frac{L}{2\pi} \approx 636.620 \text{ mm}$$
 (43 - 6)

The equations (43 - 5) and (43 - 6) yield the required loading moment

$$M = 2\pi \frac{El_y}{L} \approx 29657.585 \text{ Nm}$$
 (43 - 7)

Moreover, equations (43 - 3) and (43 - 4) yield the unknown maximum displacements

$$u_{X,\max} = -L = -4000.0 \text{ mm}$$
 (43 - 8)

$$u_{Z,\max} = -2R \approx -1273.2 \text{ mm}$$
 (43 – 9)

RFEM 5 and RSTAB 8 Settings

- Modeled in version RFEM 5.05.0030 and RSTAB 8.05.0030
- The element size is $I_{FE} = 0.004 \text{ m}$
- The number of increments is 1
- Isotropic linear elastic material model is used
- Member division for large deformation or post-critical analysis is activated

Results

Structure File	Program
0043.01	RFEM 5
0043.02	RSTAB 8

Good agreement of the numerical results with the analytical solution was achieved:

Displacement	Analytical Solution	RFEM 5		RSTAB 8	
	[mm]	[mm]	Ratio [-]	[mm]	Ratio [-]
$u_{X,\max}$	-4000.0	-3998.5	1.000	-4000.0	1.000
U _{Z,max}	-1273.2	-1273.1	1.000	-1273.2	1.000

