Category: Large Deformation Analysis, Isotropic Linear Elasticity, Member

Verification Example: 0043 - Cantilever Bend to Form a Circle

0043 - Cantilever Bend to Form a Circle

Description

Determine the bending moment M, which acts at the free end of the cantilever and which bends the member to a circular shape. Neglecting beam's self weight, assuming the large deformation theory and loading the cantilever with this particular M, check the maximum deflections $u_{X, \max }$ and $u_{Z, \text { max }}$.

Material	Steel	Modulus of Elasticity	E	210.000	GPa
		Shear Modulus	G	81.000	GPa
Geometry	Beam	Length	L	4000.000	mm
		Diameter	d	42.400	mm
		Wall Thickness	t	4.000	mm

Figure 1: Problem sketch

Analytical Solution

The second moment of inertia around y axis I_{y} equals to (see Figure 1):

$$
\begin{equation*}
I_{y}=\frac{\pi\left[d^{4}-(d-2 t)^{4}\right]}{64} \approx 89908.5 \mathrm{~mm}^{4} \tag{43-1}
\end{equation*}
$$

A beam in the large deformation analysis is described by the nonlinear differential equation

$$
\begin{equation*}
\kappa(x)=\frac{u_{z}^{\prime \prime}(x)}{\left[1+\left(u_{z}^{\prime}(x)\right)^{2}\right]^{\frac{3}{2}}}=-\frac{M}{E I_{y}} \tag{43-2}
\end{equation*}
$$

which is an equation difficult to solve in general. However, the term on the right-hand side is constant and consequently the left-hand side, which is nothing else then the beam curvature κ, is constant also. The only curve which has constant curvature is a circle, therefore, the solution to this problem is a circle arc of radius R. We get

Verification Example: 0043 - Cantilever Bend to Form a Circle

$$
\begin{align*}
& u_{x, \max }=R \sin \alpha-L \\
& u_{z, \max }=R(1-\cos \alpha)
\end{align*}
$$

where the radius of the circular arc equals to

$$
\begin{equation*}
R=\left|\frac{1}{\kappa(x)}\right|=\frac{E I_{y}}{M} \tag{43-5}
\end{equation*}
$$

The angle of the circular arc equals to $\alpha=\frac{L}{R}$. In our case $\alpha=2 \pi$, which yields

$$
\begin{equation*}
R=\frac{L}{2 \pi} \approx 636.620 \mathrm{~mm} \tag{43-6}
\end{equation*}
$$

The equations (43-5) and (43-6) yield the required loading moment

$$
\begin{equation*}
M=2 \pi \frac{E I_{y}}{L} \approx 29657.585 \mathrm{Nm} \tag{43-7}
\end{equation*}
$$

Moreover, equations (43-3) and (43-4) yield the unknown maximum displacements

$$
\begin{align*}
& u_{X, \max }=-L=-4000.0 \mathrm{~mm} \tag{43-8}\\
& u_{z, \max }=-2 R \approx-1273.2 \mathrm{~mm} \tag{43-9}
\end{align*}
$$

RFEM 5 and RSTAB 8 Settings

- Modeled in version RFEM 5.05.0030 and RSTAB 8.05.0030
- The element size is $I_{\mathrm{FE}}=0.004 \mathrm{~m}$
- The number of increments is 1
- Isotropic linear elastic material model is used
- Member division for large deformation or post-critical analysis is activated

Results

Structure File	Program
0043.01	RFEM 5
0043.02	RSTAB 8

Good agreement of the numerical results with the analytical solution was achieved:

Displacement	Analytical Solution	RFEM 5		RSTAB 8	
	$[\mathrm{mm}]$	$[\mathrm{mm}]$	Ratio [-]	$[\mathrm{mm}]$	Ratio [-]
$u_{X, \max }$	-4000.0	-3998.5	1.000	-4000.0	1.000
$u_{Z, \max }$	-1273.2	-1273.1	1.000	-1273.2	1.000

