Program: RFEM 5, RF-FE-LTB, RFEM 6

Category: Second-Order Analysis, Isotropic Linear Elasticity, Warping, Member

Verification Example: 0054 – Influence of the Normal Force on the Torsion

0054 – Influence of the Normal Force on the Torsion

Description

Member with the given boundary conditions is loaded with the moment M_T and the axial force F_x (**Figure 1**). Neglecting it's self-weight, determine beam's maximum torsional deformation max φ as well as its inner torsional moment M_T defined as a sum of a primary torsional moment M_{Tpri} and torsional moment caused by the normal force M_{TN} . Provide a comparison of those values while assuming or neglecting the influence of the normal force.

Material	Steel	Modulus of Elasticity	Ε	210.000	GPa
		Shear Modulus	G	81.000	GPa
Geometry	Beam	Length	L	3.000	m
		Height	h	0.400	m
		Width	b	0.180	m
		Web Thickness	S	0.010	m
		Flange Thickness	t	0.014	m
Load		Force	F _x	500.000	kN
		Moment	M _x	1.200	kNm

Analytical Solution

Assuming that the relative torsion φ' is constant and no secondary torsional moment acts on the structure, beam's torsional moment $M_{\rm T}$ can be obtained as a sum of a primary torsional moment $M_{\rm Tpri}$ and torsional moment caused by the normal force $M_{\rm TN}$:

Verification Example: 0054 – Influence of the Normal Force on the Torsion

$$M_{\rm T} = M_{\rm Tpri} + M_{\rm TN} \tag{54-1}$$

$$M_{\rm Tpri} = G I_{\rm T} \varphi' \tag{54-2}$$

$$M_{\rm TN} = N(i_{\rm p})^2 \varphi' \tag{54-3}$$

Knowing that beam's torsional moment equals to the acting moment ($M_x = M_T$) and the normal force has the opposite value of the acting force ($N = -F_x$), beam's relative torsion φ' can be expressed from the previous system of equations as follows:

$$\varphi' = \frac{M_{\rm T}}{Gl_{\rm T} + N(i_{\rm p})^2} \tag{54-4}$$

where I_{T} is a torsional moment stiffness:

$$I_{\rm T} = \frac{2}{3} \left[bt^3 \left(1 - 0.63 \frac{t}{b} \right) \right] + \frac{1}{3} \left[(h - t)s^3 \left(1 - 0.63 \frac{s}{h - t} \right) \right]$$
(54 - 5)

and i_p is a polar radius of inertia:

$$i_{\rm p} = \sqrt{\frac{l_{\rm p}}{A}} = \sqrt{\frac{l_{\rm y} + l_{\rm z}}{A}} = \sqrt{\frac{bh^3 - (b - s)(h - 2t)^3 + (2tb^3) + (h - 2t)s^3}{12[hb - (h - 2t)(b - s)]}}$$
(54-6)

While neglecting the influence of the normal force, beam's relative torsion can be evaluated using the equation (54 - 4) by setting N = 0:

$$\varphi' = \frac{M_{\rm T}}{Gl_{\rm T}} \tag{54-7}$$

Knowing the expression for the relative torsion φ' , primary torsional moment M_{Tpri} can be evaluated using formula (54 – 2), moment M_{TN} using formula (54 – 3) and maximum torsional deformation φ_{max} as follows:

$$\varphi_{\max} = \varphi(\mathbf{x} = \mathbf{L}) = \varphi' \mathbf{L} \tag{54-8}$$

RFEM Settings

- Modeled in RFEM 5.05.0029 and RFEM 6.01
- The element size is $I_{\rm FE} = 0.300$ m
- The number of increments is 1
- The element type is member
- Isotropic linear elastic material model is used
- Shear stiffness of members is activated
- Torsional Warping add-on is used in RFEM 6

Results

Structure File	Program	Description	
0054.01	RFEM 5 – RF-FE-LTB, RFEM 6	N = 0 kN	
0054.02	RFEM 5 – RF-FE-LTB, RFEM 6	N = -500 kN	

As can be seen from the following comparisons, good agreements of the analytical results with the numerical outputs were achieved. In RFEM there is torsional moment caused by the normal force M_{TN} included in the secondary torsional moment M_{Tsec} , however relative torsion φ' is constant and no other secondary torsional moment is present in the calculation so it can be set (for this example only) $M_{\text{TN}} = M_{\text{Tsec}}$ and comparison with the analytical solution can be done.

Axial Force Effect	Analytical Solution	RFEM 5 RF-FE-LTB		RFEM 6	
	$arphi_{max}$ [rad]	$arphi_{max}$ [rad]	Ratio [-]	$arphi_{max}$ [rad]	Ratio [-]
N = 0 kN	0.101	0.101	1.000	0.101	1.000
N = -500 kN	0.166	0.165	0.994	0.165	0.994

Axial Force	Analytical	RFEM 5		RFEM 6	
Effect	Solution	RF-FE-LTB			
	M _{Tpri}	M _{Tpri}	Ratio	M _{Tpri}	Ratio
	[kNm]	[kNm]	[-]	[kNm]	[-]
N = 0 kN	1.200	1.200	1.000	1.200	1.000
N = -500 kN	1.972	1.966	0.997	1.966	0.997

Axial Force	Analytical	RFEM 5		RFEM 6	
Effect	Solution	RF-FE-LTB			
	M _{TN}	M _{TN}	Ratio	M _{TN}	Ratio
	[kNm]	[kNm]	[-]	[kNm]	[-]
N = 0 kN	0.000	0.000	-	0.000	-
N = -500 kN	-0.772	-0.766	0.992	-0.766	0.992

Axial Force	Analytical	RFEM 5		RFEM 5 RFEM 6	
Effect	Solution	RF-FE-LTB		RF-FE-LTB	
	M _T	М _т	Ratio	<i>М</i> т	Ratio
	[kNm]	[kNm]	[-]	[kNm]	[-]
N = 0 kN	1.200	1.200	1.000	1.200	1.000
N = -500 kN	1.200	1.200	1.000	1.200	1.000

Verification Example: 0054 – Influence of the Normal Force on the Torsion

References

[1] LUMPE, G. and GENSICHEN, V. Evaluierung der linearen und nichtlinearen Stabstatik in Theorie und Software: Prüfbeispiele, Fehlerursachen, genaue Theorie. Ernst, 2014.

