Kalifold

Program: RFEM 5, RFEM 6

Category: Geometrically Linear Analysis, Isotropic Plasticity, Plate

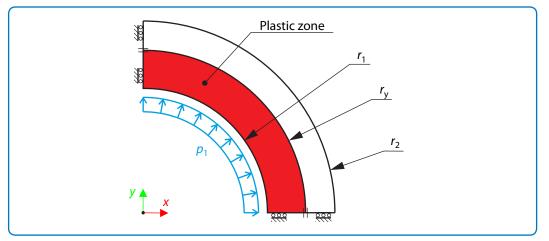
Verification Example: 0066 – Plastic Thick-Walled Vessel

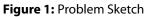
0066 – Plastic Thick-Walled Vessel

Description

A thick–walled vessel is loaded by inner pressure, which is chosen so that the vessel reaches the elastic–plastic state. The problem is modeled as a quarter model, see **Figure 1**, and is described by the following set of parameters.

Material	Modulus of Elasticity	Ε	200000.000	MPa
	Poisson's Ratio	ν	0.250	-
	Yield Strength	fy	200.000	MPa
Geometry	Inner radius	<i>r</i> ₁	200.000	mm
	Outer radius	r ₂	300.000	mm
Load	Inner pressure	<i>p</i> ₁	80.000	MPa





While neglecting self-weight, determine and compare the analytical and numerical solution for the radial position of the plastic zone border r_v under the Tresca hypothesis for the yield surface.

Analytical Solution

The stress state of the thick-walled vessel is described by the equation of equilibrium

$$\frac{\mathrm{d}\sigma_{\mathrm{r}}}{\mathrm{d}r} + \frac{\sigma_{\mathrm{r}} - \sigma_{\mathrm{t}}}{r} = 0 \tag{66-1}$$

where $\sigma_{\rm r}$ and $\sigma_{\rm t}$ are the radial and tangent stresses, respectively.

The Tresca criterion implies the tensile yield strength f_v to be equal to

$$f_{\rm y} = \sigma_{\rm t} - \sigma_{\rm r} \tag{66-2}$$

Verification Example: 0066 – Plastic Thick-Walled Vessel

which then with the following boundary condition

$$\sigma_{\rm r}(r_1) = -p_1 \tag{66-3}$$

renders (66 – 1) into the relation

$$\sigma_{\rm r}(r) = f_{\rm y} \ln \frac{r}{r_1} - p_1 \tag{66-4}$$

Denoting p_y the pressure at the yield radius r_y , see (**66** – **6**), and substituting into (**66** – **4**) the yield radius,

0

$$\sigma_{\rm r}(r_{\rm y}) = f_{\rm y} \ln \frac{r_{\rm y}}{r_{\rm 1}} - p_{\rm 1}$$
 (66 - 5)

$$\sigma_{\rm r}(r_{\rm y}) = -p_{\rm y} \tag{66-6}$$

 $p_{\rm y}$ reads as

$$p_{y} = p_{1} - f_{y} \ln \frac{r_{y}}{r_{1}}$$
(66 - 7)

Further, the elastic part of the vessel has to be described, for the details of which see [1]. From the Tresca at the yield radius r_y it follows that

$$f_{\mathbf{v}} = \sigma_{\mathbf{t}}(\mathbf{r}_{\mathbf{v}}) - \sigma_{\mathbf{r}}(\mathbf{r}_{\mathbf{v}}) \tag{66-8}$$

$$\sigma_{\rm r}(r_{\rm y}) = -p_{\rm y} \tag{66-9}$$

$$\sigma_{\rm t}(r_{\rm y}) = 2K + p_{\rm y} \tag{66-10}$$

whence

$$p_{\rm y} = \frac{f_{\rm y}(r_2^2 - r_{\rm y}^2)}{2r_2^2} \tag{66-11}$$

Lastly, combining (66 - 7) and (66 - 11) yields the sought relation

$$p_1 = f_y \left(\ln \frac{r_y}{r_1} + \frac{(r_2^2 - r_y^2)}{2r_2^2} \right)$$
(66 - 12)

the numerical solution of which yields

$$r_{\rm v} \approx 278.103 \,{\rm mm}$$
 (66 – 13)

RFEM Settings

- Modeled in RFEM 5.06 and RFEM 6.01
- The element size is $I_{\rm FE} = 0.002$ m
- The number of increments is 10
- Isotropic plastic 2D/3D material model is used

Results

Structure Files	Program
0066.01	RFEM 5, RFEM 6

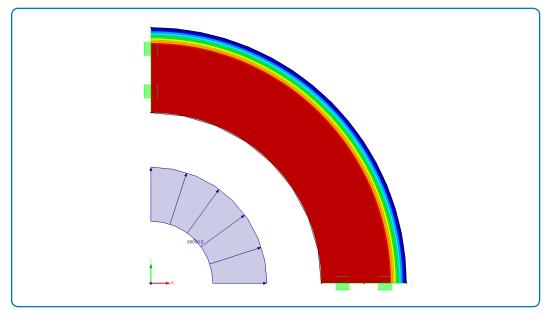


Figure 2: Results in RFEM - Tresca stress

Quantity	Analytical Solution	RFEM 5	Ratio	RFEM 6	Ratio
r _y [mm]	278.103	276.200	0.993	276.000	0.992

References

[1] DLUBAL SOFTWARE GMBH, Verification Example 0064 – Thick-Walled Vessel. 2016.

