Program: RFEM 5

Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Plate

Verification Example: 0070 – Rectangular Plate Under Lateral and Transversal Load

0070 – Rectangular Plate Under Lateral and Transversal Load

Description

A simply supported rectangular Kirchhoff plate is subjected to uniform lateral pressure p_z and stretched by a distributed load $f_{x'}$ see **Figure 1**.

Assuming only the small deformation theory and neglecting self-weight of the plate, determine its maximum out-of-plane deflection u_{max} .

Material	Linear Elastic	Modulus of Elasticity	Е	50.000	GPa
		Poisson's Ratio	ν	0.200	_
Geometry	Rectangle	Thickness	t	0.200	m
		Larger edge length	l _x	2.000	m
		Shorter edge length	l _y	1.000	m
Load		Lateral pressure	<i>p</i> _z	100.000	kN/m
		Edge tension	f _x	10.000	MPa

Figure 1: Problem sketch

Analytical Solution

A Kirchhoff-plate deformation field $\mathbf{u}(x, y) = [u_x(x, y), u_y(x, y), u_z(x, y)]^\top$ under the transversal load p_z fulfills

$$u_x = -z \frac{\partial u}{\partial x}, \quad u_y = -z \frac{\partial u}{\partial y}, \quad u_z = u$$
 (70 - 1)

Verification Example: 0070 – Rectangular Plate Under Lateral and Transversal Load

for some out-of-plane displacement u(x, y), and the behavior of the plate is governed by the non-homogeneous biharmonic equation

$$D\nabla^2 \nabla^2 u(x, y) = p_z \tag{70-2}$$

where $D = Et^3/[12(1-\nu^2)]$ is the flexural rigidity of the plate and $\nabla^2 w = \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2}$ the Laplace operator.

The membrane forces $f_{x'}$, f_y are then added as an equivalent transversal force

$$p_{z}^{\star} = f_{x} \frac{\partial^{2} u_{z}}{\partial x^{2}} + f_{y} \frac{\partial^{2} u_{z}}{\partial y^{2}}$$
(70 - 3)

see Section 3.3 in [1] for the details of the derivation through Tailor expansion and neglecting higher order terms.

Hence, equation (70 - 2) reads as

$$D\nabla^2 \nabla^2 u(x,y) = p_z + f_x \frac{\partial^2 u}{\partial x^2} + f_y \frac{\partial^2 u_z}{\partial y^2}$$
(70 - 4)

The transversal load p_z and the deflection u can be expressed in a double Fouries series

$$p_z = \frac{16p_z}{\pi^2} \sum_m^{\infty} \sum_n^{\infty} \frac{1}{mn} \sin \frac{m\pi x}{l_x} \sin \frac{n\pi y}{l_y} \qquad \text{for } m, n = 1, 3, 5, \dots$$
(70 - 5)

$$u(x,y) = \sum_{m}^{\infty} \sum_{n}^{\infty} U_{mn} \sin \frac{m\pi x}{l_x} \sin \frac{n\pi y}{l_y} \qquad \text{for } m, n = 1, 3, 5, \dots$$
 (70 - 6)

Substituting (70 - 5) and (70 - 6) into (70 - 4), the unknown coefficients U_{mn} can be obtained

$$U_{mn} = \frac{16p_z}{D\pi^6 mn \left[\left(\frac{m^2}{l_x^2} + \frac{n^2}{l_y^2} \right)^2 + \frac{f_x m^2}{\pi^2 Dl_x^2} \right]}$$
(70 - 7)

The combination of (70 – 7) and (70 – 6) leads to the formula for the plate deflection u(x, y)

$$u(x,y) = \frac{16p_z}{D\pi^6} \sum_{m}^{\infty} \sum_{n}^{\infty} \frac{\sin \frac{m\pi x}{l_x} \sin \frac{n\pi y}{l_y}}{mn \left[\left(\frac{m^2}{l_x^2} + \frac{n^2}{l_y^2} \right)^2 + \frac{f_x m^2}{\pi^2 Dl_x^2} \right]} \qquad \text{for } m, n = 1, 3, 5, \dots$$
(70 - 8)

Assuming that the plate will be deflected the most at its center where $x = \frac{l_x}{2}$ and $y = \frac{l_y}{2}$, the formula for the maximum deflection u_{max} can be easily derived as

$$u_{\max} = \frac{16p_z}{D\pi^6} \sum_{m}^{\infty} \sum_{n}^{\infty} \frac{\sin\frac{m\pi l_x}{2}\sin\frac{n\pi l_y}{2}}{mn\left[\left(\frac{m^2}{l_x^2} + \frac{n^2}{l_y^2}\right)^2 + \frac{f_xm^2}{\pi^2 Dl_x^2}\right]} \qquad \text{for } m, n = 1, 3, 5, \dots$$
(70 - 9)

 $u_{\rm max} pprox 2.920~{
m mm}$

RFEM 5 Settings

- Modeled in version RFEM 5.06.3039
- Element size is $I_{FE} = 0.010 \text{ m}$
- Geometrically linear analysis is considered
- Number of increments is 1
- Kirchhoff plate theory is used

Results

Figure 2: RFEM 5 Solution

As can be seen from the table below, excellent agreement of numerical output with the analytical result was achieved.

Analytical Solution	RFEM 5		
u _{z,max} [mm]	u _{z,max} [mm]	Ratio [-]	
2.920	2.917	1.001	

References

[1] SZILARD, R. Theories and Application of Plate Analysis: Classical Numerical and Engineering *Method*. Hoboken, New Jersey.

