Category: Geometrically Linear Analysis, Isotropic Linear Elasticity, Dynamics, Plate

Verification Example: 0109 – Natural Vibrations of Circular Plate

0109 – Natural Vibrations of Circular Plate

Description

A circular steel plate of radius a and thickness h is clamped around its circumference r = a according to **Figure 1**. Determine the natural frequencies of the circular plate. The problem is described by the following parameters.

Material	Steel	Modulus of Elasticity	Ε	210000.0	MPa
		Poisson's Ratio	ν	0.300	_
		Density	ρ	7850.000	kgm⁻³
Geometry		Radius	а	0.500	m
		Thickness	h	0.001	m

Analytical Solution

Free vibrations of a circular plate can be described by the wave equation in polar coordinates r, φ

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \varphi^2}\right)^2 u_z + \frac{1}{c^2}\frac{\partial^2}{\partial t^2}u_z = 0$$
(109 - 1)

where $u_z = u_z(r, \varphi, t)$ is the deflection in transversal direction. The speed of the wave propagation c is given by the density of the plate density ρ , plate thickness h and the plate modulus D

Verification Example

$$c = \sqrt{\frac{D}{\rho h}}, \qquad D = \frac{Eh^3}{12(1-\nu^2)}$$
 (109-2)

The solution is sought for in following form

$$u_z(r,\varphi,t) = W(r,\varphi)e^{i\Omega t}$$
(109-3)

After substitution into (109 - 1), the following equation is obtained

$$\Delta^2 W - \frac{\Omega^2}{c^2} W = 0 \tag{109-4}$$

where \varDelta is the Laplace operator in polar coordinates, more precisely

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \varphi^2}$$
(109 - 5)

hence, (109 - 4) can be rewritten as

$$\left(\Delta + \frac{\Omega}{c}\right) \left(\Delta - \frac{\Omega}{c}\right) W = 0 \tag{109-6}$$

Thus two independent equations have to be solved further

$$\left(\Delta + \frac{\Omega}{c}\right) = 0, \qquad \left(\Delta - \frac{\Omega}{c}\right) = 0$$
 (109 - 7)

Assuming that the variables of $W(r, \varphi)$ are separated, i.e., $W = R(r)F(\varphi)$, (109 – 7) yields¹

$$r^{2}\frac{R''}{R} + r\frac{R'}{R} \pm r^{2}\frac{\Omega}{c} = m^{2} = -\frac{F''}{F}$$
(109 - 8)

The left-hand side of the equation depends on the radius r, and the right-hand side depends on the angle φ , which are independent variables. Thus, both sides have to be equal to a constant m^2 .

The angle-dependent equation $F'' + m^2 F = 0$ admits the solution

$$F(\varphi) = A\sin(m\varphi) + B\cos(m\varphi)$$
(109 - 9)

0109 –

where the constants A, B are defined by the boundary conditions.

On the other hand, the radius-dependent equations can be rewritten into the Bessel and modified Bessel differential equations, more precisely

¹ The dashed notation indicates the derivative with respect to the appropriate spatial coordinate, e.g., $R'' = \frac{d^2 R}{dr^2}(r)$.

$$r^{2}R'' + rR' \pm \left(r^{2}\frac{\Omega}{c} - m^{2}\right)R = 0$$
 (109 - 10)

The solution of the Bessel equations take the form

$$R(r) = CJ_m\left(\sqrt{\frac{\Omega_{mn}}{c}}r\right) + DY_m\left(\sqrt{\frac{\Omega_{mn}}{c}}r\right), \qquad n = 1, 2, 3, \dots \quad (109 - 11)$$

$$R(r) = EI_m\left(\sqrt{\frac{\Omega_{mn}}{c}}r\right) + FK_m\left(\sqrt{\frac{\Omega_{mn}}{c}}r\right), \qquad n = 1, 2, 3, \dots$$
(109 - 12)

where J_m and Y_m are Bessel functions and I_m and K_m are modified Bessel functions.

For the circular plate, Bessel functions Y_m and K_m become unbounded as $r \to 0$, therefore the constants D, F have to equal zero. The general solution is then rewritten in the form of linear combination with constants C_1 , C_2 as

$$R(r) = C_1 J_m\left(\sqrt{\frac{\Omega_{mn}}{c}}r\right) + C_2 I_m\left(\sqrt{\frac{\Omega_{mn}}{c}}r\right)$$
(109 - 13)

For the clamped plate, the following boundary conditions are prescribed

$$R(a) = C_1 J_m\left(\sqrt{\frac{\Omega_{mn}}{c}}a\right) + C_2 I_m\left(\sqrt{\frac{\Omega_{mn}}{c}}a\right) = 0$$
 (109 - 14)

$$R'(a) = C_1 J'_m\left(\sqrt{\frac{\Omega_{mn}}{c}}a\right) + C_2 I'_m\left(\sqrt{\frac{\Omega_{mn}}{c}}a\right) = 0$$
(109 - 15)

where the dash denotes the derivative of the appropriate Bessel function. These derivatives can be replaced according to general formulas for Bessel functions

$$J'_{m}(x) = -J_{m+1}(x) + \frac{mJ_{m}(x)}{x}$$
(109 - 16)

$$I'_{m}(x) = I_{m+1}(x) + \frac{mI_{m}(x)}{x}$$
(109 - 17)

$$I_m\left(\sqrt{\frac{\Omega_{mn}}{c}}a\right)J_{m+1}\left(\sqrt{\frac{\Omega_{mn}}{c}}a\right)+J_m\left(\sqrt{\frac{\Omega_{mn}}{c}}a\right)I_{m+1}\left(\sqrt{\frac{\Omega_{mn}}{c}}a\right)=0$$
 (109 - 18)

From the roots of this equation the set of constants Ω_{mn} is obtained. Considering $\Omega_{mn} = 2\pi f_{mn}$, the set of natural frequencies f_{mn} of the clamped circular plate can be calculated. The first six natural frequencies can be found in the result table.

RFEM 5 Settings

- Modeled in RFEM 5.07.05
- The element size is $I_{\rm FE} = 0.010$ m
- For entity type Solid, layered mesh is used with 4 layers
- Isotropic linear elastic material model is used

Results

Structure Files	Program	Entity	
0109.01	RF-DYNAM Pro	Plate	
0109.02	RF-DYNAM Pro	Solid	

Frequency	Analytical Solution	Plate		Solid	
		RF-DYNAM Pro	Ratio	RF-DYNAM Pro	Ratio
<i>f</i> ₁ [Hz]	10.179	10.179	1.000	10.253	1.007
f ₂ [Hz]	21.184	21.184	1.000	21.343	1.008
<i>f</i> ₃ [Hz]	34.752	34.751	1.000	35.020	1.008
<i>f</i> ₄ [Hz]	39.629	39.624	1.000	39.940	1.008
<i>f</i> ₅ [Hz]	50.847	50.844	1.000	51.251	1.008
<i>f</i> ₆ [Hz]	60.611	60.604	1.000	61.118	1.008

Following Figure 2 shows the first six natural shapes of the investigated plate.

Figure 2: First six natural shapes of the plate in RFEM 5

