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Abstract

In the last, nearly three decades suspen-domes have become popular
solutions for covering sports halls, stadiums and venue halls particularly in China and
Japan. While suspen-domes can be easily constructed and maintained, their
application extends the span limits for grid dome systems. Unlike for cable domes,
special construction methods are not required, still a more cost-efficient, stiffer and
more robust structure is created for mid- and large-spans. This hybrid spatial
structure is composed from an upper single layer dome, and a lower , concentric
tensegritic system.

This project focuses on the design and collapse resistance of suspen-domes,
in the first part of the work a literature review is presented as the preparation to the
actual case study of preliminary design and progressive collapse analysis of the dome.

The review discusses the typical design features, the behaviour and the
applicable acceptance criteria of suspen-domes. Also the aspects of progressive
collapse are presented in general and specifically for suspen-domes.

A preliminary design study is carried out for a forty-meter spanning trimmed
lamella suspen-dome. It has been proven that global stability is a governing design
aspect, the outermost-ring stiffened suspen-dome can fail even with moderate stress
utilisation ratio and deflections, if the nonlinear stability with imperfect geometry is
not assessed.

The progressive collapse analyses of the work were carried out according to
the strategy of limiting the extent of localised failure. In case of most space
structures, including suspen-domes, the alternative load path method with notional
member removal is the most viable approach. The first, beam only model (Han et al.,
2015) was found efficient for locating those member configurations of notional
removal, that are mostly likely causing progressive collapse. In the other hand, a
combined beam & shell model was found as safer and more reliable for predicting
the stability and integrity of the remainder structure. The results of the two analyses

are compared and discussed. Flowcharts of the used methodologies are presented.
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Introduction

[.] Introduction

In the early 1990s a novel structural system for large spans were introduced
by Professor Mamoru Kawaguchi and his team. As presented in 1993 on the
Symposium of the International Association for Shell and Spatial Structures, the
proposed new space structure is an optimal combination of an upper single layer grid
dome and a lower tensegrity system. A lightweight and stable hybrid solution was
demonstrated that brings the advantages of the large span reticulated steel domes
and the already existing cable dome structures of the era.

Their structural behaviour and mechanical characteristics can be relatively
easily described. Significant numbers of research publications identify the excellent
stability properties of such a system Due to the presence of tensegritic elements in
combination with lattice dome members, specific failure modes may occur on
suspen-domes and these shall be assessed in any collapse analyses.

The available research literatures separately discuss the topics of geometry
optimisation, optimised initial pretension, simplified analysis, assessments of static
nonlinear behaviour, stability and dynamic properties of suspen-domes.

Assessment of collapse mechanisms and more importantly, the potential of
progressive collapse is a key requirement for all structures, for roofs and space
structures as well. The highly statically indeterminate systems are built of lightweight
slender members in complex geometric patterns, typically cover spaces crowded by
people. Exposure and significance of stadium roofs are obvious when judging
measures versus disproportionate failure. Unfortunately, instability related
disproportionate collapse of single layer domes still occur from time to time. The
existing research papers may advise the methods of collapse analysis separately for
single layer dome and the cable system. A complete progressive collapse analysis

study requires substantial, often excessive resources in daily engineering practice.

The aim of this dissertation is to review this novel hybrid solution, its
behaviour in conjunction with the available findings of research; to summarise design
options in aspects of strength and stability performance; then to carry out a
preliminary design case study and arrive to the assessment of ultimate capacity and

progressive collapse through a preliminary designed example.




