Category: NAFEMS Benchmark, Geometrically Linear Analysis, Isotropic Linear Elasticity, Dynamics, Member

Verification Example: NAFEMS FV 2 - Pin-Ended Double Cross - In Plane Vibration

NAFEMS FV 2 - Pin-Ended Double Cross - In Plane Vibration

Description

Determine the first sixteen natural frequencies of a double cross with square cross-section, see Figure 1. Each of eight arms is modeled by means of four beam elements and has a pin support at the end (x and y-deflection is restricted). The vibrations are considered only in plane $x y$.

The problem is defined according The Standard NAFEMS Benchmarks [1] and it is described in Figure 1 and by the following set of parameters.

Material	Isotropic	Modulus of Elasticity	E	200000.000	MPa
	Poisson's Ratio	ν	0.300	-	
	Density	ρ	8000.000	kgm^{-3}	

Figure 1: Problem sketch, dimensions are in meters

RFEM Settings

- Modeled in RFEM 5.26.01 and RFEM 6.01
- Isotropic linear elastic material model is used
- Consistent mass matrix and Lanczos solver is used
- RF-DYNAM Pro module is used in RFEM 5
- Modal Analysis addon is used in RFEM 6

Results

Structure Files	Program
FV02.01	RFEM 5 - RF-DYNAM Pro, RFEM 6

Figure 2: RFEM 5 results - mode shapes overview

Mode Shape	Target	RFEM 5 - RF-DYNAM Pro		RFEM 6	
	f $[\mathrm{~Hz}]$	f $[\mathrm{~Hz}]$	Ratio $[-]$	f $[\mathrm{~Hz}]$	Ratio $[-]$
1	11.336	11.339	1.000	11.336	1.000
2,3	17.709	17.692	0.999	17.686	0.999
$4,5,6,7,8$	17.709	17.720	1.001	17.715	1.000
9	45.345	45.523	1.004	45.476	1.003
10,11	57.390	57.425	1.001	57.362	1.000
$12,13,14,15$, 16	57.390	57.745	1.006	57.681	1.005

References

[1] THE INTERNATIONAL ASSOCIATION FOR THE ENGINEERING ANALYSIS COMMUNITY, The Standard NAFEMS Benchmarks. NAFEMS Ltd., Glasgow, United Kingdom, 2012.

