

Structural Analysis & Design Software

Amy Heilig, PE Presenter CEO - USA Office

Alex Bacon, EIT Moderator

Technical Support Engineer

Webinar

AISI S100 / CSA S136 Cold-Formed Steel Design in RFEM 6

2

Questions During the Presentation

GoToWebinar Control Panel

File View Help _02× Show or hide 5 ▼ Audio Adjust audio control panel Sound Check? settings Computer audio O Phone call MUTED \checkmark \sim Ask questions [Enter a question for staff] Webinar ID: 373-901-987 🛞 GoToWebinar

恣

Content

- 01 Custom cross-section calculation in RSECTION
- 02 Modeling and loading review in RFEM 6
- 03 Direct Analysis Method for stability design
- 04 Direct Strength Method and Finite Strip Method advantages
- Dlubal
- 05 Design of members in Steel Design Add-on

恣

Member Buckling Behavior

- Failure buckling modes caused by compressive stress (bending moment or axial force)
- Three buckling modes considered for thin-walled sections
 - Local buckling Elements bend with no translation at fold lines; short halfwavelength (i.e., the length at which the buckling shape repeats along the member length)
 - Global buckling lateral bending of the entire member including flexural, torsional, flexural-torsional, lateral-torsional; one long half-wavelength dependent on unbraced length
 - Distortional buckling combination of local/global failure with some translation at fold lines; half-wavelength between local/global
- Two methods to address buckling
 - Effective Width Method
 - Direct Strength Method

Effective Width Method vs. Direct Strength Method

- **Effective Width Method**
 - Effective section calculation required for each element
 - No interaction between elements for overall member behavior

Direct Strength Method (RFEM Method)

- No effective width calculations required
- No iterations required
- Gross cross-sectional properties are used
- Interaction of all elements for all stability limit states
- Compatibility and equilibrium maintained at element junctures
- Applicable to a broad range of sections
- More accurate strength prediction than effective width method

Dluba

Finite Strip Method (FSM)

- Critical elastic stress/force is required for buckling design
- FSM is an acceptable numerical solution method for Direct Strength Method (AISI S100-16 App. 2.2)
- Simply supported member buckling analyzed with plate bending strips
- Unique buckling mode curve generated for each cross-section (local [a], distortional [b], global [c])
- 7 FSM signature graphs available in RFEM
- "Total" curve combines all modes for quick evaluation based on curve minima
- KB 1809, KB 1841, and KB 1801 on the Dlubal website

Dlubal Software

RFEM and Stability Design

Finite Strip Method (Numerical Method)

- Applicable for local, distortional, and global elastic buckling failures
- Flexural and torsional stability failure modes grouped together for global buckling regardless if option is unchecked (limitation with FSM graphs)
- Longest effective length (KL) for flexural and torsional considered together for global buckling regardless if smaller effective length is defined

Acc. to Chapter E2 and F2.1 (Analytical Method)

- Only applicable for global buckling (FSM still used for local and distortional buckling)
- Can consider varying effective lengths independently for flexural and torsional failure modes and global buckling

Web Crippling Design

- AISI S100-16 Sect. G5 Web Crippling w/o Holes
- AISI S100-16 Sect. H3 Combined Bending and Web Crippling
- Applicable for sections acc. to Table G5-1

 G5-4 (built-up I-beams, single web channels, C-sections, single web Zsections, hat sections)
- Member must have 0° rotation set
- "Steel" Design Supports applied to member for reference to G5 tables

Show	Design Check Details Design Checks in Location					Design Check GG6251 AISC 360 2016	
sign Stuation	Material Properties Section Properties			AIC	CF 7CS4x059 AISI D100-17	Chapter G	
and account of the Party of the	Design Internal Forces Axial force	P	-4.228 kip			Web crippling in -z-axis acc. to AISI \$100, G5	
1 - 1.40D V K F	Shear force Shear force	Vy Vs	0.000 kip 1.090 kip		Negligible		
t No.	Torsional moment Ficeural moment	Mi Mi	0.00 kipft 0.00 kipft		Negligible Negligible	Support and flange conditions: Fastened to support	
• • 5	Ficeural moment	Mi	0.00 kipft		Negligible	 Stiffened or partially stiffened flanges 	
	Applicability Limits Acc. to Tab. 84.1-1 Direct Strength Metho Direct Strength Metho	td				Load cases:	
4 F 2	Stiffened element in compression					One-flange loading or reaction End	
an x (M)	Width to thickness ratio	tov	110.288	s 5- V			
~ e • 1/4	Edge-stiffened element in compression		1			$\frac{n}{t} \le 200$	
ion .	Width to thickness ratio	b/t	59.441	x 1 v		N < 210	
	Unstiffened element in compression					t _ www	
Charles C 1984ab . V. 4 . b	Governing element number Width to thickness ratio	No. dit	5 8.924	s 60 🗸		$\frac{N}{h} \leq 2$	
201 (38) (399) (80 - 1)	Inside bend radius					R	
	Inside bend radius Thickness	R	0.188 in 0.059 in			$\frac{1}{t} \leq 9$	
	Radius to thickness ratio	Rit	3.178	s 20 🗸		The conditions for Table Go are fulfilled.	Fe GS 1
	Simple edge stiffener length/width ratio Ord Jacout length		6.773 in			$P_n = C \cdot (t)^2 \cdot F_y \cdot sin(\theta) \cdot \left(1 - C_R \cdot \sqrt{\frac{R}{t}}\right) \cdot \left(1$	
	Out-to-out width	be the	4.000 in	10.0			
	Scriptin to writer late	~6°De	U.195	20.0		= 4.00 · (0.059 in)" · 33.000 ksi · sin (90.00 deg) · (
	- Edge stiffener type Number of intermediate stiffeners in w	-	Simple 0	54 -		- 0.952 kip	
	Number of intermediate stiffeners in b	Die .	0	\$2 .		$P_{\mu} = \Phi_{\mu} \cdot P_{\mu}$	Eq. 83.2.2
	Vield stress	Pyster Py	95.000 kai 33.000 kai	s P V		= 0.85 · 0.952 kip	
	Design Check Values						~
	Required web crippling strength Yield stress	P Fy	1.090 kip 33.000 ksi			$\eta = \frac{P}{n_{H} \cdot P_{A}}$	
	Height Thickness	h t	6.507 in 0.059 in			1.090 kip	
	Inside bend radius Rearing (cost)	R	0.188 in 3.000 in			1.00 · 0.809 kip	
	Angle between plane of web and plane of bearing surf.	. e	90.00 deg		65	= 1.340	
	Inside bend radius coefficient Dearing length coefficient	Cit Cit	0.14		63 63	n - 1.946 - 1 F	
	Web stenderness coefficient Nominal web crippling strength	CA Pa	0.02 0.912 kip		GS Eq. GS-1	b. Brinks	
	Resistance factor for web orppling Available web criming strength	0., 0.	0.85		65 fa 83 2 3 2	a regar	
	Number of webs	Dat	1 -		1.11.1.1	18 清 國泰。	
1						0.220	0
							T

9

Dlubal Software Information

Visit website www.dlubal.com

- Videos and recorded webinars
- **Events and** conferences
- **Knowledge Base** articles
- FAQs

Register for Online Training

Download Free 90-Day Trial

Dlubal Software, Inc. 30 South 15th Street 15th Floor Philadelphia, PA 19102

Phone: (267) 702-2815 Email: info-us@dlubal.com **Dlubal Software**

Webinars and PDH

Upcoming Webinars

Register www.dlubal.com

Support & Learning → Webinars

Registration through **email**

PDH Certificates

Automatically emailed to participants

3

Available for the **full** presentation

Additional attendees request PDH to info-us@dlubal.com

Continuing Education Certificate For successfully completing the webinar Introduction to the New RFEM 6 1.0 Professional Development Hour (1 PDH) Participan John Smith

> Course dat hu, Nav 11, 2021

Dided Schware, No., The Graham Building 30 South 156 Street 126 Place, Policidajdola, PA 19102

恣

www.dlubal.com