

Fassung April 2016

Zusatzmodul

RF-/FUND Pro

Bemessung von Einzelfundamenten nach EN 1992-1-1 und EN 1997-1

Programmbeschreibung

Alle Rechte, auch das der Übersetzung, vorbehalten. Ohne ausdrückliche Genehmigung der DLUBAL SOFTWARE GMBH ist es nicht gestattet, diese Programmbeschreibung oder Teile daraus auf jedwede Art zu vervielfältigen.

© Dlubal Software GmbH 2016 Am Zellweg 2 D-93464 Tiefenbach Deutschland

Tel.: +49 9673 9203-0 Fax: +49 9673 9203-51 E-mail: info@dlubal.com Web: www.dlubal.de Dluba

Inhalt

Inhalt

Seite

1.	Einleituna	4
11	Zusatzmodul RE-/FUND Pro	4
12	Gebrauch des Handbuchs	5
13	Aufruf von RE-/FUND Pro	5
2.	Fingabedaten	7
21	Basisangaben	7
211	Bemessungsfall / Fundament-Nummer	8
21.7	Bemessung nach Norm / NA	9
213	Fundamenttyn	10
2.1.5	Vorgaben für geotechnische Nachweise	11
215	Bodenprofil	12
2151	Fingabe eines Bodenprofils	13
2152	Situationen für Fingabe des Bodenprofils	19
2153	Übernahme der Bodenkennwerte aus Bestandsnositionen	10
2.1.5.5	Anwendungsgrenzen des Bodenprofils	20
2.1.5.4	Geometrie	20
2.2	Stütze	22
2.2.1	Fundamentalatte	22
2.2.2	Köcher	25
2.2.5	Anordnung der berizontalen Bügel im Köcher	25 26
2.2.4	Roputzordofiniorto Ribliothok dar Eundamontvorlagon	20
2.2.5	Matorialion	20
2.5	Polastung	···· 27
2.4	Delastung	
2	Berechnung	20
3.	Berechnung	39 39
3. 3.1 3.1 1	Berechnung Detaileinstellungen	39 39
3. 3.1 3.1.1 3.1.2	Berechnung Detaileinstellungen Fundamentplatte	39 39 39 40
3. 3.1 3.1.1 3.1.2 3.1.3	Berechnung Detaileinstellungen Fundamentplatte Position des Bemessungsschnittes Bemessung in der Geotechnik nach EN 1997-1	39
3. 3.1 3.1.1 3.1.2 3.1.3 3.1.4	Berechnung Detaileinstellungen Fundamentplatte Position des Bemessungsschnittes Bemessung in der Geotechnik nach EN 1997-1 Stahlbetonbemessung nach EN 1992-1-1	39 39 40 40
3. 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	Berechnung Detaileinstellungen Fundamentplatte Position des Bemessungsschnittes Bemessung in der Geotechnik nach EN 1997-1 Stahlbetonbemessung nach EN 1992-1-1	39 39 40 40 40 43
3. 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.16	Berechnung Detaileinstellungen Fundamentplatte Position des Bemessungsschnittes Bemessung in der Geotechnik nach EN 1997-1 Stahlbetonbemessung nach EN 1992-1-1 Durchstanzen	39 39 39 40 40 43 43 43
3. 3.1. 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7	Berechnung Detaileinstellungen Fundamentplatte Position des Bemessungsschnittes Bemessung in der Geotechnik nach EN 1997-1 Stahlbetonbemessung nach EN 1992-1-1 Durchstanzen Lasten in Maske 1.4.	39 39 40 40 43 43 43 45
3. 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2	Berechnung Detaileinstellungen Fundamentplatte Position des Bemessungsschnittes Bemessung in der Geotechnik nach EN 1997-1 Stahlbetonbemessung nach EN 1992-1-1 Durchstanzen Lasten in Maske 1.4 Deaktivierung von Lagerlasten für die Bemessung Mindestahmeesungen	39 39 40 40 43 43 43 43 45 45
3. 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3	Berechnung Detaileinstellungen Fundamentplatte Position des Bemessungsschnittes Bemessung in der Geotechnik nach EN 1997-1 Stahlbetonbemessung nach EN 1992-1-1 Durchstanzen Lasten in Maske 1.4 Deaktivierung von Lagerlasten für die Bemessung Mindestabmessungen	39 39 40 40 43 43 43 45 45 45
3. 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3	Berechnung Detaileinstellungen Fundamentplatte Position des Bemessungsschnittes Bemessung in der Geotechnik nach EN 1997-1 Stahlbetonbemessung nach EN 1992-1-1 Durchstanzen Lasten in Maske 1.4 Deaktivierung von Lagerlasten für die Bemessung Mindestabmessungen Start der Berechnung	39 39 40 40 43 43 43 45 45 45 45 45 51
3. 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3 4. 4.1	Berechnung Detaileinstellungen Fundamentplatte Position des Bemessungsschnittes Bemessung in der Geotechnik nach EN 1997-1 Stahlbetonbemessung nach EN 1992-1-1 Durchstanzen Lasten in Maske 1.4 Deaktivierung von Lagerlasten für die Bemessung Mindestabmessungen Start der Berechnung Ergebnisse Geometrie	39 39 40 40 43 43 43 45 45 45 45 45 51
3. 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3 4. 4.1 4.2	Berechnung Detaileinstellungen Fundamentplatte Position des Bemessungsschnittes Bemessung in der Geotechnik nach EN 1997-1 Stahlbetonbemessung nach EN 1992-1-1 Durchstanzen Lasten in Maske 1.4 Deaktivierung von Lagerlasten für die Bemessung Mindestabmessungen Start der Berechnung Ergebnisse Geometrie Maßgebende Nachweise	
3. 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3 4. 4.1 4.2 4.3	Berechnung Detaileinstellungen Fundamentplatte Position des Bemessungsschnittes Bemessung in der Geotechnik nach EN 1997-1 Stahlbetonbemessung nach EN 1992-1-1 Durchstanzen Lasten in Maske 1.4 Deaktivierung von Lagerlasten für die Bemessung Mindestabmessungen Start der Berechnung Ergebnisse Geometrie Maßgebende Nachweise Erforderliche Bewehrung	39 39 40 40 43 43 43 45 45 45 45 45 51 51 52 54
3. 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3 4. 4.1 4.2 4.3 4.4	Berechnung Detaileinstellungen Fundamentplatte Position des Bemessungsschnittes Bemessung in der Geotechnik nach EN 1997-1 Stahlbetonbemessung nach EN 1992-1-1 Durchstanzen Lasten in Maske 1.4 Deaktivierung von Lagerlasten für die Bemessung Mindestabmessungen Start der Berechnung Ergebnisse Geometrie Maßgebende Nachweise Erforderliche Bewehrung Lintere Plattenbewehrung	
3. 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3 4. 4.1 4.2 4.3 4.4 4.5	Berechnung Detaileinstellungen Fundamentplatte Position des Bemessungsschnittes Bemessung in der Geotechnik nach EN 1997-1 Stahlbetonbemessung nach EN 1992-1-1 Durchstanzen Lasten in Maske 1.4 Deaktivierung von Lagerlasten für die Bemessung Mindestabmessungen Start der Berechnung Ergebnisse Geometrie Maßgebende Nachweise Erforderliche Bewehrung Untere Plattenbewehrung Obere Plattenbewehrung	39 39 40 40 43 43 43 43 45 45 45 45 51 51 52 54 56 50
3. 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3 4. 4.1 4.2 4.3 4.4 4.5 4.6	Berechnung Detaileinstellungen Fundamentplatte Position des Bemessungsschnittes Bemessung in der Geotechnik nach EN 1997-1 Stahlbetonbemessung nach EN 1992-1-1 Durchstanzen Lasten in Maske 1.4 Deaktivierung von Lagerlasten für die Bemessung Mindestabmessungen Start der Berechnung Ergebnisse Geometrie Maßgebende Nachweise Erforderliche Bewehrung Untere Plattenbewehrung Obere Plattenbewehrung Köcharbewehrung	39 39 40 40 43 43 43 43 45 45 45 45 51 51 51 52 54 54 56 59 60
3. 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3 4. 4.1 4.2 4.3 4.4 4.5 4.6 4.7	Berechnung Detaileinstellungen Fundamentplatte Position des Bemessungsschnittes Bemessung in der Geotechnik nach EN 1997-1 Stahlbetonbemessung nach EN 1992-1-1 Durchstanzen Lasten in Maske 1.4 Deaktivierung von Lagerlasten für die Bemessung Mindestabmessungen Start der Berechnung Ergebnisse Geometrie Maßgebende Nachweise Erforderliche Bewehrung Untere Plattenbewehrung Obere Plattenbewehrung Köcherbewehrung Stablliste	39 39 40 40 43 43 43 45 45 45 45 45 51 51 52 54 56 59 60 61
3. 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3 4. 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	Berechnung Detaileinstellungen Fundamentplatte Position des Bemessungsschnittes Bemessung in der Geotechnik nach EN 1997-1 Stahlbetonbemessung nach EN 1992-1-1 Durchstanzen Lasten in Maske 1.4 Deaktivierung von Lagerlasten für die Bemessung Mindestabmessungen Start der Berechnung Ergebnisse Geometrie Maßgebende Nachweise Erforderliche Bewehrung Untere Plattenbewehrung Obere Plattenbewehrung Köcherbewehrung Stahlliste Betonkubatur	39 39 40 40 43 43 43 45 45 45 45 51 51 52 54 56 59 60 60 61 62
3. 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3 4. 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 5	Berechnung Detaileinstellungen Fundamentplatte Position des Bemessungsschnittes Bemessung in der Geotechnik nach EN 1997-1 Stahlbetonbemessung nach EN 1992-1-1 Durchstanzen Lasten in Maske 1.4 Deaktivierung von Lagerlasten für die Bemessung Mindestabmessungen Start der Berechnung Ergebnisse Geometrie Maßgebende Nachweise Erforderliche Bewehrung Untere Plattenbewehrung Obere Plattenbewehrung Köcherbewehrung Stahlliste Betonkubatur	39 39 40 40 43 43 43 45 45 45 45 45 51 51 51 52 54 56 59 60 61 62 62
3. 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3 4. 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 5. 5.1	Berechnung Detaileinstellungen Fundamentplatte Position des Bemessungsschnittes Bemessung in der Geotechnik nach EN 1997-1 Stahlbetonbemessung nach EN 1992-1-1 Durchstanzen Lasten in Maske 1.4 Deaktivierung von Lagerlasten für die Bemessung Mindestabmessungen Start der Berechnung Ergebnisse Geometrie Maßgebende Nachweise Erforderliche Bewehrung Untere Plattenbewehrung Obere Plattenbewehrung Köcherbewehrung Stahlliste Betonkubatur Ergebnisauswertung Grafik der Fundaments in Ergebnismacko	39 39 40 40 43 43 43 45 45 45 45 45 51 51 52 54 56 59 60 61 61 62 63
3. 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.2 3.3 4. 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 5.1 5.2	Berechnung Detaileinstellungen Fundamentplatte Position des Bemessungsschnittes Bemessung in der Geotechnik nach EN 1997-1 Stahlbetonbemessung nach EN 1992-1-1 Durchstanzen Lasten in Maske 1.4 Deaktivierung von Lagerlasten für die Bemessung Mindestabmessungen Start der Berechnung Ergebnisse Geometrie Maßgebende Nachweise Erforderliche Bewehrung Untere Plattenbewehrung Obere Plattenbewehrung Stahlliste Betonkubatur Ergebnisauswertung Grafik der Fundaments in Ergebnismaske 2D. Rendering	39 39 40 40 43 43 43 45 45 45 45 45 51 51 51 52 54 56 59 60 61 62 63 63

4 Dlubal

5.3	Bewehrungspläne	67
5.4	Ergebnisse am RFEM/RSTAB-Modell	68
6.	Ausdruck	70
6.1	Ausdruckprotokoll	70
6.2	Grafikausdruck	71
7.	Allgemeine Funktionen	72
7.1	Bemessungsfälle	72
7.2	Einheiten und Dezimalstellen	74
7.3	Nationale Anhänge	74
7.4	Bemessungsverfahren	75
7.5	Export der Ergebnisse	77
8.	Beispiele	80
8.1	Köcherfundament	80
8.1.1	Lagerkräfte	80
8.1.2	Weitere Vorgaben	81
8.1.3	Abmessungen Fundamentplatte und Köcher	82
8.1.3.1	Mindesteinbindetiefe der Stütze	84
8.1.4	Horizontalkräfte auf Köcherwände	85
8.1.5	Bügelzugkräfte und Bügelbewehrung	86
8.1.5.1	Horizontale Köcherbügel Bu (allseitig außen)	86
8.1.5.2	Horizontale Köcherbügel BuY (in y-Richtung außen)	90
8.1.5.3	Horizontale Köcherbügel BuX (in x-Richtung außen)	92
8.1.5.4	Vertikale Köcherbügel Vx	93
8.1.5.5	Vertikale Köcherbügel Vy und Köcherwandbewehrung	95
8.1.6	Biegebruchsicherheit der Köcherwand	96
8.1.7	Betonspannungen in Köcherwänden	98
8.1.8	Übergreifungslänge der Köcherbewehrung	99
8.1.9	Bodenmechanische Nachweise	100
8.1.9.1	Nachweis der Sicherheit gegen Aufschwimmen	101
8.1.9.2	Nachweis der Sicherheit gegen Grundbruch	101
8.1.9.3	Nachweis der Sicherheit gegen stark exzentrische Belastung	103
8.1.9.4	Nachweis der Sicherheit gegen Gleiten	104
8.1.9.5	Nachweis der Lagesicherheit	104
8.1.10	Nachweis der inneren Standsicherheit	105
8.1.10.1	Biegebruchsicherheit der Fundamentplatte	105
8.1.10.2	Durchstanzsicherheit der Fundamentplatte	112
8.2	Blockfundament	115
8.2.1	Fundamentabmessungen	115
8.2.2	Bewehrung im Blockfundament	115
8.2.2.1	Vertikale Bewehrung in x-Richtung	115
8.2.2.2	Vertikale Bewehrung in y-Richtung	116
8.2.2.3	Horizontale Bewehrung (Schubbewehrung Köcher)	117
8.3	Blockfundament mit glatten Köcherinnenseiten	118
8.3.1	System und Belastung	118
8.3.2	Fundamentabmessungen	119
8.3.3	Resultierende Lagerkräfte	120
8.3.4	Ermittlung der horizontalen Köcherbewehrung Bu	120
8.3.5	Ermittlung der vertikalen Bewehrung Vx	121
8.3.6	Nachweis der Betonspannung	122
8.4	Grundbruchnachweis nach Verfahren 2*	123
8.4.1	System und Belastung	123
8.4.2	Fundamentabmessungen	124

4 Dlubal

В.	Index 13	30
Α.	Literatur	29
8.4.8	Vergleich der Ergebnisse 12	28
8.4.7	Maßgebende Nachweise 12	27
8.4.6	Weitere Bemessungsvorgaben 12	26
8.4.5	Bemessungsdetails	26
8.4.4	Bodenparameter	25
8.4.3	Resultierende Lagerkräfte 12	25

1.1 Zusatzmodul RF-/FUND Pro

Im Alltag des Tragwerkplaners zählt die Bemessung von Einzelfundamenten zu den Standardaufgaben. Die Anzahl an Nachweisen, die für den Grenzzustand der Tragfähigkeit und der Gebrauchstauglichkeit geführt werden müssen, erfordert eine leistungsfähige Software, damit Einzelfundamente effizient bemessen werden können.

Die Zusatzmodule **RF-FUND Pro** für RFEM und **FUND Pro** für RSTAB erfüllen diese Voraussetzung. Sie bieten dem Anwender die Möglichkeit, Einzelfundamente wirtschaftlich zu bemessen und die Ergebnisse in einer prüffähigen Form zu dokumentieren.

Dieses Handbuch beschreibt die Zusatzmodule der beiden Hauptprogramme gemeinsam unter der Bezeichnung **RF-/FUND Pro**.

RF-/FUND Pro führt die Nachweise für folgende Fundamenttypen:

- Köcherfundament mit glatten oder rauen Köcherinnenseiten
- Fundamentplatte
- Blockfundament mit glatten oder rauen Köcherinnenseiten

Diese Auswahl an Fundamenttypen deckt eine Vielzahl der in der Baupraxis ausgeführten Fundamente ab.

Die Stahlbetonbemessung der Fundamente erfolgt in RF-FUND Pro nach der Norm

EN 1992-1-1:2004 + AC:2010 [1]

Die geotechnischen Nachweise werden entsprechend folgender Norm geführt:

EN 1997-1 [2]

Einzelne Nachweisarten können – falls dies vom Anwender gewünscht ist – gezielt deaktiviert werden.

Die Lastfälle und Kombinationen, die bei der Bemessung mit RF-/FUND Pro benutzt werden, sind im Hauptprogramm RFEM bzw. RSTAB zu erstellen. Nach der Berechnung stehen die Lagerlasten der Lastfälle und Kombinationen im Zusatzmodul zur Verfügung. Dabei ist es möglich, einzelne Lagerlasten für die Bemessung des Fundaments zu deaktivieren.

Die Ergebnisse der Fundamentbemessung können im Ausdruckprotokoll von RFEM bzw. RSTAB dokumentiert werden. Des Weiteren stehen dem Anwender Bewehrungspläne des Fundaments zur Verfügung, die auch in ein DXF-Dokument exportiert werden können.

Wir wünschen Ihnen viel Freude und Erfolg mit RF-/FUND Pro.

Ihr DLUBAL-Team

10

Da die Themenbereiche Installation, Benutzeroberfläche, Ergebnisauswertung und Ausdruck im RFEM- bzw. RSTAB-Handbuch ausführlich erläutert sind, wird hier auf eine Beschreibung verzichtet. Der Schwerpunkt dieses Handbuchs liegt auf den Besonderheiten, die sich bei der Arbeit mit dem Zusatzmodul RF-/FUND Pro ergeben.

Dieses Handbuch orientiert sich an der Reihenfolge und am Aufbau der Eingabe- und Ergebnismasken. Im Text sind die beschriebenen **Schaltflächen** (Buttons) in eckige Klammern gesetzt, z. B. [Bearbeiten]. Gleichzeitig sind sie am linken Rand abgebildet. Die **Begriffe**, die in Dialogen, Tabellen und Menüs erscheinen, sind in *Kursivschrift* hervorgehoben, sodass die Erläuterungen gut nachvollzogen werden können.

Am Ende des Handbuchs befindet sich ein Stichwortverzeichnis. Sollten Sie dennoch nicht fündig werden, so können Sie die Suchfunktion auf unserer Webseite www.dlubal.de nutzen, um in der umfangreichen Liste aller Fragen und Antworten das Problem nach bestimmten Kriterien einzugrenzen.

Zur Handhabung von RF-/FUND Pro haben wir auch einige Blog-Beiträge verfasst, in denen Tipps und Tricks zum Modul vorgestellt werden. Den Dlubal-Blog finden Sie ebenfalls auf unserer Homepage https://www.dlubal.de/blog/de. Über die Textsuche können Sie speziell nach Beiträgen zu RF-/FUND Pro recherchieren.

1.3 Aufruf von RF-/FUND Pro

Es bestehen in RFEM bzw. RSTAB folgende Möglichkeiten, das Zusatzmodul RF-/FUND Pro zu starten.

Menü

Sie können das Zusatzmodul aufrufen mit dem RFEM- bzw. RSTAB-Menü

 $\textbf{Zusatzmodule} \rightarrow \textbf{Fundamente} \rightarrow \textbf{RF-/FUND} \ \textbf{Pro}.$

Navigator

Alternativ rufen Sie das Zusatzmodul im Daten-Navigator auf durch Anklicken des Eintrags

Zusatzmodule ightarrow RF-/FUND Pro.

Bild 1.2: Daten-Navigator: Zusatzmodule \rightarrow RF-FUND Pro

Sie haben auch die Möglichkeit, Zusatzmodule im *Daten*-Navigator als Favoriten zu speichern: Öffnen Sie mit einem Rechtsklick auf einen Moduleintrag dessen Kontextmenü. Dort wählen Sie dann die Option **Favorit**.

Bild 1.3: RF-FUND Pro als Favorit festlegen

13

RF-/FUND Pro kann nicht direkt als Einzelprogramm gestartet werden. Das Zusatzmodul ist fest in RFEM bzw. RSTAB integriert. Dies bedeutet auch, dass das Modell mit dem zu bemessenden Fundament vor dem Aufruf von RF-/FUND Pro in RFEM bzw. RSTAB geöffnet werden muss.

2 Eingabedaten

2.1 Basisangaben

RF-FUND Pro - [RFEM-Beispiel-06	5]		×
Datei Einstellungen Hilfe			
FA1 - Bemessung von Fundame 💌	1.1 Basisangaben		
Fundament Nr. 1 - Eungabedaten - Basiangaben - Geometrie - Material - Belastung	Fundament Nr.: Bezeichnung: 1 An Knoten Nr. 5.9:14 Fundamenthyp Köcherfundament mit diaten Köcherinnenseien	Nach EN 1932-1-1 + EN 1937-1 V Din V T	Pro
	Köcherlundament mit gustef i Kocherinnenseten Köcherfundament mit rauen Köcherinnenseten Biockfundament mit glatten Köcherinnenseten		-FUND
	Basedee voormeessang Bendzendefiniet orsk : [MN/m ²] Gruedenschuidestand aach DIN EN 1997.1 //M-2010.12	Passive Environment Passive Environment Passive Environment Passive Environment Passive Environment Passive Environment	No. 1
	Charabaterine Later Content 13/17/144201012 Für den Regelfall nach DIN EN 1397-17.46.10 Nicht bindiger Boden Kommentar	Verhähnisse in Untergrund: Konsolidierte Verhähnisse • 🛋	Einzel-, Köcher und Biockfundamente
	Berechnung Details [Nat. Anhang]	Grafik	OK Abbrechen

Bild 2.1: Maske 1.1 Basisangaben

Nach dem Aufruf von RF-/FUND Pro sehen Sie links den RF-/FUND Pro-Navigator, der alle aktuell anwählbaren Masken anzeigt.

Darüber befindet sich eine Liste mit den eventuell bereits vorhandenen Bemessungsfällen. Über die Schaltfläche 💽 wird die Liste aufgeklappt und Sie können den gewünschten Bemessungsfall durch Anklicken aktiveren.

Unterhalb der Titelleiste befinden sich die Pulldown-Menüs Datei, Einstellungen und Hilfe.

Im Menü *Datei* finden Sie Möglichkeiten, einen neuen Bemessungsfall anzulegen, zu löschen, umzubenennen oder zu kopieren (siehe Kapitel 7.1, Seite 72). Ferner besteht die Möglichkeit, die Datei zu speichern und die Geometrie des Fundaments und die Bewehrungszeichnungen zu exportieren. Informationen zum Export der Ergebnisse finden Sie im Kapitel 7.5 auf Seite 77.

In jeder Eingabemaske von RF-/FUND Pro steht die Schaltfläche [Details] zur Verfügung. Sie eröffnet den Zugang zum Dialog *Details*, in dem verschiedene Einstellungen für die Berechnung getroffen werden können. Der Dialog *Details* ist im Kapitel 3.1 ab Seite 39 beschrieben.

Details...

2.1.1 Bemessungsfall / Fundament-Nummer

In RF-/FUND Pro ist zwischen einem Bemessungsfall ("RF-/FUND Pro-Fall") und einem Fundament zu unterscheiden.

Einem **Bemessungsfall** können beliebig viele Fundamente zugeordnet werden. Beim Anlegen eines neuen Falls wird standardmäßig ein Fundament erstellt (**Fundament** Nr. 1), dem alle Knotenlager des Modells zugeordnet sind.

Wie das Bild 2.1 zeigt, wurde für den Fall *FA1* ein Fundament mit Fundament Nr. *1* angelegt. Hierbei ist das Häkchen bei *Alle Knotenlager* gesetzt. Damit wird für die Knotennummern 5 und 9-14 ein Köcherfundament mit glatter Köcherinnenseite angelegt.

Bei größeren Modellen mit verschiedenen Fundamentformen und Stützenabmessungen kann es erforderlich werden, mehrere Fundamente in einem Fall zu untersuchen. Hierzu kann im aktuellen Fall ein neues Fundament definiert werden, bei dem z. B. der Fundamenttyp geändert oder eine exzentrische Stützenanordnung gewählt wird.

Fundament

Die Nummer des aktuellen Fundaments wird in der Liste dieses Abschnitts angezeigt.

Fundament		
Nr.:	Bezeichnung:	
1 🚽 🎦 🔁 🗙		

Bild 2.2: Abschnitt Fundament

Rechts daneben sind drei Schaltflächen angeordnet, über die Sie ein Fundament [Neu] anlegen, [Kopieren] oder [Löschen] können.

Dem Fundament können Sie auch eine Bezeichnung zuweisen.

An Knoten Nr.

Dieser Abschnitt verwaltet die Nummern der Knoten, für die die aktuellen Fundamentparameter gelten.

An Knoten Nr.	
5,9-14	👔 🔲 Alle Knotenlager

Bild 2.3: Abschnitt An Knoten Nr.

Über die Schaltfläche 🔊 können die relevanten Knoten auch in der RFEM- bzw. RSTAB-Grafik ausgewählt werden. Dort können im Dialog *Mehrfachauswahl* bereits selektierte Lagerknoten mit [Leeren] gelöscht werden.

*♪	Mehrfachauswahl Knoten mit Lager wählen.		
Ausgev 5,9-14	ählt:		
Leer	en OK Abbrechen		

Bild 2.4: Auswahl der Knoten in RFEM/RSTAB

Alternativ ist es möglich, den Haken bei *Alle Knotenlager* zu setzen. Dann werden dem aktuellen Fundament alle Knoten zugeordnet, an denen ein Knotenlager vorliegt.

An Knoten Nr.		
5,9-14	😽 🛛 🖉 Alle Knotenlager	

Bild 2.5: Auswahl aller Knoten mit Lagereigenschaften

In einem RF-/FUND Pro-Fall kann jeder Knoten nur <u>einmal</u> ausgewählt werden! Um ein weiteres Fundament mit der gleichen Knotennummer zu bemessen, muss ein neuer Fall angelegt werden.

Wird ein Fundament mit 🛅 kopiert (z. B. Fundament Nr. 1), so erhält das neue Fundament automatisch alle Lagerknoten zur Bemessung zugewiesen, die bei Fundament Nr. 1 nicht ausgewählt wurden.

2.1.2 Bemessung nach Norm / NA

In RF-/FUND Pro stehen folgende Normen für die Nachweisführung zur Verfügung:

- Stahlbetonbemessung nach EN 1992-1-1:2004/AC:2010 [1]
- Geotechnische Nachweise nach EN 1997-1 [2]

Der maßgebende Nationale Anhang kann in einer Liste ausgewählt werden.

Bild 2.6: Nationale Anhänge

Nat. Anhang

Über die Schaltfläche 💽 können die Parameter des aktuellen Nationalen Anhangs überprüft werden. Die Schaltfläche [Nat. Anhang] unten im RF-/FUND Pro-Fenster ist mit der gleichen Funktion belegt.

Die Schaltfläche 🛅 ermöglicht es, einen benutzerdefinierten Nationalen Anhang zu erstellen.

Weitere Informationen zu den zur Verfügung stehenden Normen und Nationalen Anhängen finden Sie im Kapitel 7.3 ab Seite 74.

2.1.3 Fundamenttyp

In diesem Abschnitt ist die Ausführung des Fundaments festzulegen. Sie wird in der Grafik dynamisch skizziert.

Bild 2.7: Abschnitt Fundamenttyp

Folgende Fundamenttypen stehen zur Auswahl:

Tabelle 2.1: Fundamenttypen

Bei Köcher- und Blockfundamenten besteht eine weitere Unterscheidungsmöglichkeit im Hinblick auf die Oberflächenbeschaffenheit der Köcherinnenseiten. Diese kann glatt oder rau ausgeführt sein.

Beim Ändern eines Fundamenttyps an bestehenden Positionen erscheint ein Hinweis, wonach die Eingabe des Bodenprofils kontrolliert werden soll (siehe Bild 2.8).

RF-FUND Pro Fehler Nr. 671		
Die Änderung des Fundamenttyps bewirkt eine Änderung des Bodenprofils. Bitte überprüfen Sie das angesetzte Bodenprofil.		

Bild 2.8: Hinweis beim Ändern des Fundamenttyps

Diese Kontrolle ist wichtig, da sich die Eingabe des Bodenprofils auf die Oberkante des Fundaments bezieht. Wenn z. B. von einem Köcherfundament auf eine Fundamentplatte gewechselt wird, ändert sich die Höhenlage des Bodenprofils in Bezug auf die Fundamentplatte.

2.1.4 Vorgaben für geotechnische Nachweise

Zulässige Bodenpressung

In diesem Abschnitt kann zwischen zwei bzw. drei Eingabemöglichkeiten ausgewählt werden.

Zul	ässige Bodenpressung
0	Benutzerdefiniert
	σRk : 0.200 🚔 [MN/m ²]
0	Grundbruchwiderstand nach DIN EN 1997-1/NA:2010-12
0	Für den Regelfall nach DIN EN 1997-1, A6.10
	Nicht bindiger Boden

Bild 2.9: Abschnitt Zulässige Bodenpressung

Die charakteristische Bodenpressung kann *Benutzerdefiniert* vorgegeben werden. Sie wird für den Sohlspannungsnachweis $\sigma_{\rm Ed} \leq \sigma_{\rm Rd} = \sigma_{\rm Rk} / \gamma_{\rm R,v}$ gemäß EN 1997-1 herangezogen.

Alternativ wird der Nachweis der zulässigen Bodenpressung über den *Grundbruchwiderstand* nach EN 1997-1 Anhang D geführt. **Bei dieser Option ist es zwingend erforderlich, dass für die Berechnung des Grundbruchwiderstandes der Aufbau des Bodens definiert wird.** Die Eingabe eines Bodenprofils ist im Kapitel 2.1.5 beschrieben.

Für den deutschen Nationalen Anhang ist es auch möglich, die zulässigen Bodenpressungen anhand der Tabellen für den *Regelfall* gemäß DIN EN 1997-1, A6.10 zu bestimmen. Hierbei ist zunächst anzugeben, ob ein bindiger oder ein nicht-bindiger Boden vorliegt. Über die Schaltfläche sit folgender Dialog zur Bestimmung der Bodengruppe zugänglich.

Zulässige Bodenpressung für den Regelfall bei bindigem Baugrund				
Bodengruppe nach DIN 18	196	Tabellenwert erhöhen		
Reiner Schluff - UL	•	Um 20 %, falls das Seitenverhältnis a' / b' < 2 (A 6.10.3.2, A(1))		
Konsistenz: Steif	b fest 	♥ Um die zulässige Bodenpressung der zusätzlichen Tiefe, falls die Einbindetiefe t > 2 m (A 6.10.1, A (5))		
Tabelle A 6.6 Reiner Schlu	ıff			
Einbindetiefe des	Reiner Schluff			
Fundaments	(UL)			
[m]	steif			
0.5	180			
1	250			
1.5	310			
2	350			
Anforderungen des Regel	falls berücksichtigen	Tabellen wert reduzieren		
Frostfreie Einbindetiefe (t > 80 cm) (A 6.4, A(2))		✓ Um 10 % pro Meter der zusätzlichen Fundamentbreite, falls b' > 2 m (A 6.10.3.3, A [1])		
Maximales nicht senkrechtes Verhältnis (H' / V' < 0.2) (A 6.10.1, A(1) e)		· · · · · ·		
✓ Maximale effektive Breite der kürzeren Fundamentseite (b' <= 5 m) (A 6.10.3.3, A(2))				
D		OK Abbrechen		

Bild 2.10: Dialog Zulässige Bodenpressungen für den Regelfall bei bindigem Baugrund

Der Dialog erleichtert die Ermittlung der zulässigen Bodenpressung. Aus der Tabelle wird dann die relevante Bodenpressung in Abhängigkeit von der Fundament-Einbindetiefe bestimmt.

R

RF-/FUND Pro interpoliert hier den Wert der zulässigen Bodenpressung ($\sigma_{R,d}$) für die tatsächliche Einbindetiefe *t* des Fundaments aus den Zwischenwerten der Regelfalltabelle.

In Maske 2.2 Maßgebende Nachweise wird der für den Grundbruchnachweis angesetzte Tabellenwert der zulässigen Bodenpressung gemäß Tabelle A 6.6 (zul σ_{Tab}) ausgegeben.

Einstellungen für Gleiten

In diesem Abschnitt kann festgelegt werden, ob bei der Bemessung des Fundaments der passive Erdwiderstand gemäß EN 1997-1 Anhang C berücksichtigt werden soll.

```
Einstellungen für Gleiten

Passiven Erdwiderstand nach EN 1997-1 Anhang C

berücksichtigen
```

Bild 2.11: Abschnitt Einstellungen für Gleiten

Nach dem Anhaken des Kontrollfeldes sind im Dialog *Auslegen-Parameter der Fundamentplatte* in Maske *1.2 Geometrie* weitere Einstellungen zum Gleitsicherheitsnachweis zugänglich (siehe Bild 2.34, Seite 24).

Bodenkennwerte

Dieser Abschnitt ermöglicht Einstellungen hinsichtlich der Untergrundverhältnisse. In der Liste kann zwischen konsolidierten und unkonsolidierten Bodenverhältnissen ausgewählt werden.

Bodenkennwerte		
Verhältnisse im Untergrund:		
Konsolidierte Verhältnisse		
Unkonsolidierte Verhältnisse	3	
Konsolidierte Verhältnisse		

Bild 2.12: Abschnitt Bodenkennwerte

Der Klick auf die Schaltfläche 🛋 öffnet einen Dialog zur Definition des Bodenprofils. Dieser Dialog ist im folgenden Kapitel beschrieben.

2.1.5 Bodenprofil

Bis zur Programmversion 5.05.0030 wurde in RF-/FUND Pro der Gleit- und Grundbruchwiderstand mit einer vereinfachten Eingabe der Bodenkennwerte ermittelt. Hierzu waren lediglich die Bodenkennwerte für die Schicht über der Sohle (Schicht 1) und für die Bodenschicht unter der Sohle (Schicht 2) anzugeben.

Ab der Programmversion 5.06 ist die Eingabe eines Bodenprofils gemäß einer Bodenanalyse möglich. Mit den definierten Bodenschichten werden zum einen der Gleitwiderstand und zum anderen der Grundbruchwiderstand ermittelt. Dabei ist zu beachten, dass der Grundbruchwiderstand nach EN 1997-1 [2] erst ermittelt wird, wenn das entsprechende Auswahlfeld im Abschnitt Zulässige Bodenpressung (siehe Bild 2.9) getätigt ist.

Wird die zulässige charakteristische Sohlspannung *Benutzerdefiniert* vorgegeben, dient die Eingabe des Bodenprofils zur Ermittlung des Gleitwiderstandes sowie zur Definition der Überschüttung und des Grundwasserspiegels.

2.1.5.1 Eingabe eines Bodenprofils

Bodenpro	fil						×
Bodensci	nichten im Ursprungs- bzw. Endzustand		Höhenlagen der B	odenprofile		1	
Bodenaustausch im Endzustand			Höhenlage Ursprungsprofil		GOK: 0.310 🚔 [m]		
Ursprün	gliches Bodenprofil 🚽		Höhenlage Boder	ntausch	GOK' 0.310 🔷 [m]		
			-				
			Crundwassers	piegel	GW5: 10.000 🔶 [m]		
Ursprüng	liches Bodenprofil						
Boden		Dicke	Ordinate UK	Koordinate			GOK 0.310
Nr.	Bodenbezeichnung	∆d [m]	∆ Z [m]	Z [m]	Kommentar		
1	Sand, gut abgestuft, Sand, kiesig (SW,	1.000	1.000	1.310	Überschüttung		1.670
2	Kies-Sand-Feinkomgemisch, Sprengung	0.360	1.360	1.670			
3	Sand, gleichkömig (SE)	8.330	9.690	10.000			
4		0.000	9.690	10.000			
Fels u	nter letzter Bodenschicht				- 🗙 🛃 🕏		
Sand, gle	ichkörnig (SE)		Reibungswinkel				
🗆 Haup	t-Kennwerte		Sohlreibungswink	el	δs,d: Φd 🔻 [-]		
Sp	ezifisches Gewicht γ 16.0	0 kN/m ³	Manufaction and	- Leal			
E Zusat	zliche Kennwerte	n •	wandreibungswir	IKEI	ow,k: - 0k		
VVI Kol	areion c'h 0.00	0 MN/m2					
NO			Eingabe des E	rddruckbeiwerts	Kph		10.000
							4
V Nur v	erwendete Parameter anzeigen					B Z C C L	17 17 🗊 🚰 🚣 🖍 ≷
٢							OK Abbrechen

Bild 2.13: Dialog Bodenprofil zur Definition der Bodenschichten im Ursprungs- und Endzustand

Der Dialog *Bodenprofil* lässt sich über die Schaltfläche [Bodenprofil bearbeiten] in Maske *1.1 Basisangaben* (Abschnitt *Bodenkennwerte*) sowie in Maske *1.4 Belastung* (Abschnitt *Zusätzliche Belastung* bei Grundwasserspiegel und Überschüttung, siehe Bild 2.52, Seite 35) öffnen.

Bodenschichten im Ursprungs- bzw. Endzustand

In diesem Abschnitt lässt sich einstellen, ob für die Berechnung des Gleit- und Grundbruchwiderstandes das Bodenprofil des Ursprungszustandes oder das Bodenprofil aus dem Endzustand angesetzt werden soll.

Bild 2.14: Auswahl für Bodenschichten im Ursprungs- und Endzustand

Je nach Auswahl werden die jeweiligen Bodenschichten in der Tabelle unterhalb dargestellt. Die Tabellenüberschriften sind entsprechend gekennzeichnet (siehe Bild 2.15).

Voreingestelltes Bodenprofil

Ursprüng	liches Bodenprofil					
Boden			Dicke	Ordinate UK	Koordinate	
Nr.	Bodenbezeichnung		∆t[m]	∆ Z [m]	Z [m]	Kommentar
1	Sand, gut abgestuft, Sand, kiesig (S		0.000	0.000	0.000	Überschüttung
2	Kies-Sand-Feinkomgemisch, Sprengu		10.000	10.000	10.000	
3			0.000	10.000	10.000	
🗌 Fels unter letzter Bodenschicht 🛛 😰 📻 💽 📉 🖳					🕞 🗙 🛃 😼	

Bild 2.15: Voreingestelltes Bodenprofil

0

Beim **erstmaligen Öffnen** des Dialogs *Bodenprofil* ist nur die Vorgabe der Bodenschichten für den Ursprungszustand vorgesehen. Es sind standardmäßig zwei Bodenschichten angelegt.

Die Schicht Nr. 1 wird als Überschüttung vorgesehen, die allerdings mit der Dicke $\Delta t = 0,000$ m voreingestellt ist. Die zweite Bodenschicht ist mit einer Dicke von $\Delta t = 10,000$ m voreingestellt, sodass auch ohne weitere Vorgaben eine Bemessung der Fundamente erfolgen kann.

Höhenlagen der Bodenprofile

Beim Anlegen eines Bodenprofils in RF-/FUND Pro wird zwischen zwei Höhenlagen unterschieden:

- Höhenlage Ursprungsprofil (GOK)
- Höhenlage Bodentausch (GOK')

GOK:	0.310 ≑ [m]
GOK'	0.310 ≑ [m]
GWS:	10.000 📩 [m]
	GOK: GOK': GWS:

Bild 2.16: Höhenlagen der Bodenprofile

Grundsätzlich bezieht sich die *Höhenlage* immer auf die Oberkante des Fundaments. Bei einem Köcherfundament ist dies die Oberkante des Köchers, bei einer Fundamentplatte oder einem Blockfundament die Oberkante der Platte.

Tabelle 2.2: Definition der Höhenlage

Die Eingabe eines positiven Wertes sorgt dafür, dass sich das eingegebene Bodenprofil in z-Richtung (nach unten) verschiebt. Die Eingabe eines negativen Wertes für GOK bzw. GOK' verschiebt das Bodenprofil nach oben.

Bezüglich der Eingabegrenzen sollte auch das Kapitel 2.1.5.4 beachtet werden.

Die Eingaben für die Höhenlage des Ursprungsprofils (GOK) und des Profils im Endzustand (GOK') können in der Info-Grafik kontrolliert werden.

© DLUBAL SOFTWARE 2016

Die Schaltflächen unterhalb der Grafik sind mit folgenden Funktionen belegt:

	Drucken des Bodenprofils
đ	Verschieben, Zoomen und Drehen der Grafik des Bodenprofils
Q	Zoomen innerhalb der Infografik mittels Aufziehen eines Fensters
<u>X</u>	Anzeigen der gesamten Bodenprofil-Grafik
3	Zur zuletzt verwendeten Ansicht zurückkehren
Ĩ x	Ansicht in X-Richtung
₿-Y	Ansicht entgegen Y-Richtung
ĪŻ	Ansicht in Z-Richtung
	Isometrische Ansicht des Bodenprofils
P	Perspektivische Ansicht des Bodenprofils
1-	Ein- und Ausschalten des Achsenkreuzes am Fundament
~^	Ein- und Ausschalten der Bezeichnungen der Bodenschichten
×	Ein- und Ausschalten der Bemaßung des Bodenprofils

Tabelle 2.3: Schaltflächen für Grafik im Dialog Bodenprofil

Grundwasser

Wie in Bild 2.16 dargestellt, kann im Bodenprofil auch ein Grundwasserspiegel berücksichtigt werden. Nach dem Anhaken des Kontrollfeldes ist das Textfeld zur Eingabe der Grundwasserkote zugänglich. Die Kote des Grundwasserspiegels ist immer auf die Oberkante des Fundaments bezogen. Sie ist unabhängig von der Höhenlage des Bodenprofils.

Bodenprofil

Ursprüng	liches Bodenprofil					
Boden			Dicke	Ordinate UK	Koordinate	
Nr.	Bodenbezeichnung		∆t[m]	∆ Z [m]	Z [m]	Kommentar
1	Sand, gut abgestuft, Sand, kiesig (S		0.250	0.250	-0.750	Überschüttung
2	Kies-Sand-Feinkomgemisch, Sprengu		0.750	1.000	0.000	
3	Sand mit Feinkorn, keine Sprengung		3.000	4.000	3.000	
4			0.000	4.000	3.000	
Els unter letzter Bodenschicht					e	- I- X 🖳 🗣

Bild 2.18: Tabelle mit Schichtenaufbau des Bodenprofils

Die Vorgabe im Abschnitt *Bodenschichten im Ursprungs- bzw. Endzustand* (siehe Bild 2.14) steuert, ob die Tabelle das Bodenprofil im Ursprungszustand oder im Endzustand anzeigt. Die Tabellenüberschrift wird entsprechend angepasst

Einfügen einer neuen Bodenschicht

Das in Bild 2.15 gezeigte voreingestellte Bodenprofil lässt sich um beliebige Bodenschichten erweitern: Klicken Sie hierzu in die erste Zeile nach der letzten Bodenschicht (siehe Bild 2.19). In der Spalte *Bodenbezeichnung* erscheint die Schaltfläche ..., über die eine neue Bodenschicht für das Bodenprofil hinzugefügt werden kann.

Boden			Dicke	Ordinate UK	Koordinate	
Nr.	Bodenbezeichnung		∆t[m]	∆ Z [m]	Z [m]	Kommentar
1	Sand, gut abgestuft, Sand, kiesig (S		0.250	0.250	-0.750	Überschüttung
2	Kies-Sand-Feinkomgemisch, Sprengu		0.750	1.000	0.000	
3	Sand mit Feinkom, keine Sprengung		3.000	4.000	3.000	
4			0.000	4.000	3.000	
	h	5				

Bild 2.19: Einfügen einer neuen Bodenschicht

Materialbibliothek für Böden

Ein Klick auf die Schaltfläche ... öffnet den Dialog Material aus Bibliothek übernehmen.

iter laterialkategorie-Gruppe:				
aterialkategorie-Gruppe:	Material zum Übernehmen			
	Materialbezeichnung	Norm		
Boden 👻	📕 Kies, gleichkörnig (GE)	🔟 DIN 181	196:2011-05	
	🔟 DIN 181	96:2011-05		
aterial-Kategorie:	DIN 181	96:2011-05		
Boden 🔻	Kies-Sand-Feinkorngemisch, Sprengung des Korngerüs	t 🔟 DIN 181	196:2011-05	
	Sand, gleichkörnig (SE)	O DIN 181	196:2011-05	
orm-Gruppe:	Sand, gut abgestuft, Sand, kiesig (SW, SI)	DIN 181	96:2011-05	
I EN 🔻	Sand mit Eeinkorn, keine Sprengung des Korngerüstes	DIN 181	96:2011-05	
ormi	Sand mit Feinkorn, Sprengung des Korngerüstes (SU*,	DIN 181	96:2011-05	
	Schluff, gering plastisch (III.)	DIN 181	96.2011-05	
Alle	Schluff, gehing plastaser (oc)	DIN 181	06-2011-05	
		DIN 181	06:2011-05	
		DIN 101	06-2011-05	
	Ton, micleplasusch (TM)	DIN 101	196:2011-05	
	I on, ausgepragt plastisch (IA)	DIN 181	196:2011-05	
	Schluff oder Ton organisch (OU, OT)	DIN 181	196:2011-05	
	Torf (HN, HZ)	DIN 181	196:2011-05	
Toklusive upgültiger 🛛 🐻				
Favoritengruppe:				
	Suchen:			×
aterialkennwerte	к	ies, gleichkörn	nig (GE) DIN 1	18196:2011-0
] Haupt-Kennwerte				
Elastizitätsmodul	E		4.50	kN/cm ²
Schubmodul	G	i	2.25	kN/cm ²
Poissonsche Zahl (Querdehnzal	v (Ir		0.200	1 11 / 2
Spezifisches Gewicht	γ		16.00	
1 Zupätzliche Konnwerte				KIN/m~
Zusätzliche Kennwerte	m		0.200	KIN/m~
] Zusätzliche Kennwerte Koeffizient Kohäsion	n 	 	0.200	kN/cm ²
] Zusätzliche Kennwerte Koeffizient Kohäsion Reibungswinkel	n C 0	k k	0.200	kN/cm ²
] Zusätzliche Kennwerte Koeffizient Kohäsion Reibungswinkel Totalkohäsion	n c q c	k k uk	0.200 0.00 34 0.00	kN/cm ² kN/cm ²
] Zusätzliche Kennwerte Koeffizient Kohäsion Reibungswinkel Totalkohäsion Wichte des gesättigten Bodens	π c φ c	k k uk sat	0.200 0.00 34 0.00 19.50	kN/cm ² * kN/cm ² kN/cm ²

Bild 2.20: Materialbibliothek für Böden

In der Liste *Material zum Übernehmen* kann ein Bodenmaterial zur Verwendung im Bodenprofil ausgewählt werden. Die Kennwerte des selektierten Bodens werden unterhalb angezeigt.

[OK] fügt das Material in die Tabellenzeile des Bodenprofils ein (siehe Bild 2.19).

Die Kennwerte der voreingestellten Materialien lassen sich nicht ändern. Hierzu muss in der Bibliothek ein neues Material angelegt werden.

Ein neues Boden-Material kann mit der Schaltfläche 🛅 angelegt werden (im Bild 2.20 markiert). Dabei werden die Materialkennwerte des aktuell selektierten Bodens voreingestellt. Die Kennwerte des neuen Material sowie die Bezeichnung und Normierung können dann benutzerdefiniert angepasst werden, sodass die Materialbibliothek beliebig erweitert werden kann.

Die Schaltfläche sit zugänglich, wenn in der Tabelle *Material zum Übernehmen* ein benutzerdefiniertes Material selektiert ist. Gleiches gilt für die Schaltfläche X.

OK

[-2]

Bearbeiten der vorhandenen Bodenschichten

Die in einem Bodenprofil vorhandenen Bodenschichten können direkt über die Eingabe in die Felder der Spalten *Dicke* Δt und *Ordinate UK* ΔZ angepasst werden.

Wichtig hierbei ist, dass diese Änderungen **keinen Einfluss auf die Höhenlage** des jeweiligen Bodenprofils haben. Dies bedeutet, dass z. B. eine Vergrößerung der Dicke der Schicht Nr. 1 (z. B. Überschüttung) nicht die Oberkante des Bodenprofils nach oben hin verschiebt, sondern die Schichten 2 bis *n* nach unten verschiebt. Die eingegebenen Werte für GOK bzw. GOK' bestimmten die Höhenlage des Bodenprofils.

Bearbeiten der vorhandenen Bodenkennwerte

Um die Bodenkennwerte anzupassen, ist die Bodenschicht in der Tabelle des Bodenprofils (Ursprungs- oder Endzustand) durch einen Klick in die Zeile zu selektieren. Danach können die Bodenparameter der Schicht im Abschnitt unterhalb angepasst werden.

d Haupt-Kennwerte				
Elastizitätsmodul	E	45000.000	kN/m ²	
Schubmodul	G	22500.000	kN/m ²	
Querdehnzahl	v	0.280		
Spezifisches Gewicht	γ	18.00	kN/m ³	
Zusätzliche Kennwerte				
Beiwert (Kriechenkorrektur)	m	0.200		
Spezifisches Gewicht des g	γsat	20.00	kN/m ³	
Verformungsmodul des Unt	Edef	20000.000	kN/m ²	
Winkel der inneren Reibun	φk	33.00	•	
Kohäsion c'k 0.000 kN/m ²				
Gesamtkohäsion	Cuk	0.000	kN/m ²	
Erddruckbeiwert	Kph	10.647		

Bild 2.21: Abschnitt zum Bearbeiten der Bodenparameter

In Bild 2.21 wurde das Häkchen bei *Nur verwendete Parameter anzeigen* nicht gesetzt, wodurch alle Bodenparameter der Bodenschicht dargestellt werden. Wird das Kontrollfeld angehakt, so werden nur die für den Nachweis der Grundbruch- bzw. Gleitsicherheit verwendeten Bodenparameter angezeigt.

Die Auswahl, welche Bodenparameter für die Nachweisführung herangezogen werden, hängt von der Einstellung in der Maske 1.1 Basisangaben (siehe Bild 2.12) ab.

Ob der Erddruckbeiwert für die Editierung freigeschaltet ist, hängt davon ab, ob in Maske 1.1 der passive Erddruck aktiviert wurde (siehe Bild 2.11) und ob die manuelle Vorgabe des Erddruckbeiwerts gewählt wurde (siehe Bild 2.22).

Die Schaltflächen unterhalb der Bodenprofil-Tabelle sind mit folgenden Funktionen belegt:

2	Ergebnisse in der Grafik des Bodenprofils anzeigen
	Leere Zeile in die Tabelle einfügen (oberhalb der aktuell selektierten Zeile)
-	Aktuelle Zeile entfernen
×	Alle Bodenschichten entfernen
3	Export nach MS Excel oder OpenOffice Calc
I	Import von MS Excel oder OpenOffice Calc
Tabel	le 2.4: Schaltflächen für die Tabelle <i>Bodenprofil</i>

2 Eingabedaten

Reibungswinkel

Sohlreibungswinkel	δs,d:	φd	•	[-]
Wandreibungswinkel	δ _{w,k} :	-øk	•	[-]
Eingabe des Erddruckbeiwerts	Kph			

Bild 2.22: Dialog zum Einstellen der Reibungswinkel

In diesem Abschnitt kann der Sohlreibungswinkel für den Nachweis des Gleitens festgelegt werden. Des Weiteren kann der Wandreibungswinkel eingestellt werden, wenn in Maske 1.1 der passive Erddruck aktiviert wurde (siehe Bild 2.11).

Wird das Kontrollfeld *Eingabe des Erddruckbeiwertes Kph* angehakt, so kann der Erddruckbeiwert – wie im vorherigen Abschnitt beschrieben – manuell bei den Bodenkennwerten festgelegt werden.

Fundamentplattendicke und Köcherhöhe im Endzustand

Bei der Angabe des Bodenprofils für den Endzustand kann festgelegt werden, dass die Überschüttung oberhalb der Fundamentplatte und die Dicke der seitlichen Hinterfüllung an die Abmessungen des Fundamentes gekoppelt sind.

Hierzu ist zunächst das Bodenprofil im Endzustand auszuwählen. Anschließend kann in der Spalte *Dicke* Δt eingestellt werden, ob diese Schicht an die Köcherhöhe *h* oder die Fundamentplattendicke *d* gekoppelt sein soll.

Bild 2.23: Einstellungen für Bodenprofil im Endzustand

2.1.5.2 Situationen für Eingabe des Bodenprofils

Die Definition des Bodenprofils ist für folgende Situationen erforderlich:

- Grundbruchnachweis ohne direkte Vorgabe einer zulässigen Sohlspannung Soll der Grundbruchnachweis ohne die Vorgabe einer zulässigen Sohlspannung über die Grundbruchformel nach EN 1997-1 Anhang D geführt werden, ist ab der Version 5.06 ein Bodenprofil anzugeben.
- Aktivieren des Gleitwiderstandes (mit/ohne Berücksichtigung des passiven Erddrucks)
 Die Eingabe des Bodenprofils ist für die Ermittlung des Gleitwiderstandes erforderlich. Dies gilt auch dann, wenn die zulässige Sohlspannung in der Maske 1.1 direkt eingegeben wird.

Ist weder die direkte Berechnung der Grundbruchwiderstandes nach EN 1997-1 Anhang D noch der Nachweis der Gleitsicherheit aktiviert, dann ist die Eingabe eines Bodenprofils nicht erforderlich. Die Schaltflächen zum Öffnen des Dialogs sind in daher deaktiviert.

Die Eingabe eines möglichen Grundwasserspiegels und einer möglichen Überschüttung kann in diesem Fall direkt in Maske *1.4 Belastung* erfolgen (siehe Bild 2.24 sowie Kapitel 2.4).

Zusätzliche Belastung			
C Auflast		🔽 Grundwasserspiegel	
📰 Linienlasten		a: 2.000 🚔 [m]	
Einzellasten	1	Typ:	
		Ständig 👻	
📝 Überschüttung (ständig)	Q		
ü: 1.000 🚔 (m)			
γ: 20.00 🚔 [kN/m ³]			

Bild 2.24: Eingabe der Überschüttung und des Grundwasserspiegels ohne Bodenprofil

2.1.5.3 Übernahme der Bodenkennwerte aus Bestandspositionen

Wurde die Bemessung von Fundamenten in der Version RFEM 5.05.0030 bzw. RSTAB 8.05.0030 oder älter durchgeführt, so sind die hier getroffenen Eingaben kompatibel mit der Eingabe eines Bodenprofils.

Entsprechend den Einstellungen in der Bestandsdatei werden hierbei folgende Bodenschichten im Bodenprofil angelegt.

Boden-Nr.	Bodenbezeichnung	Lage
1	Überschüttung	vormals definierte Überschüttung in Maske 1.4
2	gamma_1	Bodenschicht auf Höhe der Fundamentplatte
3	gamma_2	Bodenschicht unter der Fundamentsohle

Tabelle 2.5: Bodenschichten bei Übernahme aus einer Bestandsposition

Das folgende Bild zeigt die Bodenschichten, die bei einer Übernahme der Bodenkennwerte angelegt wurden.

Ursprüngliches Bodenprofil						
Boden			Dicke	Ordinate UK	Koordinate	
Nr.	Bodenbezeichnung		∆t[m]	Δ Z [m]	Z [m]	Kommentar
1	Überschüttung		1.000	1.000	1.310	
2	gamma_1		0.360	1.360	1.670	
3	gamma_2		8.640	10.000	10.310	
4			0.000	10.000	10.310	
🗏 Fels unter letzter Bodenschicht						

Bild 2.25: Bodenschichten bei Übernahme aus Bestandsposition (RFEM 5.05.0030 bzw. RSTAB 8.05.0030 oder älter)

2.1.5.4 Anwendungsgrenzen des Bodenprofils

Das Bodenprofil in RF-/FUND Pro dient der Definition der einzelnen Bodenschichten unterhalb der Fundamentplatte sowie einer möglichen Hinterfüllung bzw. Überschüttung des Fundaments.

Allerdings gibt es hinsichtlich der Anwendbarkeit des Bodenprofils Grenzen, welche durch das Formelwerk aus [2] und [3] festgesetzt sind.

Folgende Berechnungsfälle sind bei Ansatz des Bodenprofils möglich:

1. Fall: GOK = GOK'

Bild 2.26: Oberkante des Bodenaustauschs und des Ursprungsprofils sind identisch

2. Fall: GOK > GOK'

Bild 2.27: Oberkante des Ursprungsprofils liegt über Oberkante des Bodenaustauschs

3. Fall: GOK < GOK'

Bild 2.28: Oberkante des Ursprungsprofils liegt unter Oberkante des Bodenaustauschs

4. Fall: GOK < GOK', wobei aber GOK unterhalb der Gründungssohle liegt

Bild 2.29: Oberkante des Ursprungsprofils liegt unter Fundamentsohle

Grundsätzlich gilt: Die Geländeoberkante des Ursprungsprofils (GOK) kann nicht unterhalb der Fundamentsohle eingegeben werden. Beim Schließen des Dialogs *Bodenprofil* erscheint daher eine Fehlermeldung.

HINWEISE:

Wenn das **Fundament direkt auf einen Bodenaustausch** ausgeführt wird, sollte die tatsächlich zulässige Sohlspannung durch Versuche ermittelt und in Maske 1.1 direkt als **zulässige charakteristische Sohlspannung** eingegeben werden. Die Berechnung einer zulässigen Sohlspannung auf einer Hinterfüllung ist nicht möglich.

Eine Berechnung des Grundbruchwiderstandes auf einem aufgeschütteten Damm oder einer aufgeschütteten Bodenschicht ist mit dem Bodenprofil in RF-/FUND Pro nicht möglich.

Die zulässigen Sohlspannungen sind ggf. einem Bodengutachten zu entnehmen.

Für die Berechnung des Gleitwiderstandes kann die Bodenschicht des Bodenaustauschs im Bodenprofil eingegeben werden. Dies bedeutet, dass für den Grundbruchwiderstand der benutzerdefinierte Grenzwert aus der Maske 1.1 und für die Gleitwiderstand die Bodenschicht unter der Fundamentsohle angesetzt wird.

2.2 Geometrie

1.2 Geometrie						
Stütze						
Abmessung c _x : 40.00 c _y : 30.00	 ← [cm] → [cm] 	Exzentrische Anordnung				
Fundamentplatte			t _o a _o c _x 			
 Abmessungen definieren Auslegen 	Seitenlänge	x: 3.000 (m) y: 2.400 (m)	Stütze			
	Plattendicke	d: 0.260 🚔 [m]				
Köcher						
Abmessungen definieren	Köcherhöhe	h: 1.310 🚔 [m]				
🔘 Auslegen	Einbindetiefe der Stütze	t: 1.310 🚔 [m]	<u>← X</u> →			
		in x in y				
	Obere Köcherwandstärke	t₀: 27.00 🚔 37.00 🚔 [cm]				
	Oberes Stützenspiel	a₀: 10.00 🛬 10.00 🚔 [cm]	- Fundamentplatte			
	Untere Köcherwandstärke	tu: 32.00 🖨 42.00 🚔 [cm]				
	Unteres Stützenspiel	au: 5.00 - 5.00 [cm]				
	Innenwandneigung	α: 87.81 × 87.81 × [°]	J → X ≻			
Anordnung der horizontalen Bügel i	Anordnung der horizontalen Bügel im Köcher					
Bügel, die die Stütze umschließen Bügel, die komplett in einer Köcherwand liegen Y						
Benutzerdefinierte Bibliothek der Fu	Benutzerdefinierte Bibliothek der Fundamentvorlagen					

Bild 2.30: Maske 1.2 Geometrie

2.2.1 Stütze

Dieser Abschnitt verwaltet die Parameter, die die Stütze betreffen.

Stütze					
Abmessung	c _x :	40.00 🚔 [cm]	Exzentrische Anordnung	~	
	cy:	40.00 🚔 [cm]			
			 	_	

In den beiden Eingabefeldern c_x und c_y sind Standard-Stützenabmessungen voreingestellt. Die Werte können an die realen Gegebenheiten angepasst werden. Mit der Schaltfläche 🕥 lassen sich die Abmessungen des Stützenquerschnitts aus dem RFEM- bzw. RSTAB-Modell übernehmen.

Über die Schaltfläche 🕢 kann auch ein anderer Querschnitt festgelegt werden, der in RFEM bzw. RSTAB angelegt wurde.

Ist das Kontrollfeld *Exzentrische Anordnung* angehakt, kann der Mittelpunkt der Stütze gegenüber dem Mittelpunkt der Platte versetzt werden. Die Exzentrizität ist in einem separaten Dialog festzulegen (siehe Bild 2.32), der über die Schaltfläche w zugänglich ist.

2 Eingabedaten

Exzentrizität der Stütze Abstand der Stützenmitte zur Mitte der Fundamentplatte e _{x.col} : -0.300 [m] e _{y.col} : 0.000 [m] Randabstand der Köcheröffnung d _x : 0.500 [m] d _y : 0.550 [m]	
	0

1-3

Bild 2.32: Dialog Exzentrische Anordnung der Stütze

Die *Exzentrizität der Stütze* kann über die vier Eingabefelder festgelegt werden. Die oberen zwei Felder beschreiben den Abstand der Stützenmitte vom Fundamentplattenschwerpunkt.

Achten Sie auf das Vorzeichen: Soll die Stütze z. B. links versetzt angeordnet werden, muss der Abstand e_x positiv eingegeben werden, da der Fundamentplattenschwerpunkt in positiver x-Richtung von der Stützenmitte aus liegt (Lagerkoordinatensystem).

In den unteren beiden Feldern sind die Abstände der Köcheröffnung von den Rändern der Fundamentplatte anzugeben. Diese Werte haben stets positive Vorzeichen.

Die interaktive Dialoggrafik zeigt die Draufsicht auf das Fundament mit dem Lagerkoordinatensystem. Sie ist hilfreich bei der Definition der Stützenexzentrizität. Mit der Schaltfläche 💽 können Sie zwischen der interaktiven Darstellung und einer Systemskizze wechseln.

2.2.2 Fundamentplatte

Fundamentplatte			
🔘 Abmessungen definieren	Seitenlänge	x: 1.100 🕂 [m] 🥏	
Auslegen		y: 1.100 🔶 [m]	
	Plattendicke	d: 0.200 📩 [m]	

Bild 2.33: Fundamentplattenabmessungen definieren oder von RF-/FUND Pro auslegen lassen

In diesem Abschnitt ist anzugeben, ob die Abmessungen der Fundamentplatte manuell vorgegeben oder vom Programm ausgelegt werden sollen.

Abmessungen definieren

Bei der manuellen Definition sind die drei Eingabefelder rechts zugänglich. Dort können die Seitenlängen und die Dicke der Fundamentplatte eingetragen werden.

Es sind die im Kapitel 3.2 angegebenen Mindestabmessungen einzuhalten!

Falls die Fundamentplatte iterativ vom Programm ausgelegt wurde (siehe unten), können die ermittelten Abmessungen mit der Schaltfläche angepasst werden. Diese Werte können dann angepasst werden, um z. B. aufgerundete Abmessungen zu benutzen.

Auslegen

RF-/FUND Pro ermittelt die Abmessungen der Fundamentplatte nach den Erfordernissen, die sich aus den bodenmechanischen Nachweisen ergeben.

Die Parameter zur Auslegung der Fundamentplatte sind über die Schaltfläche wird zugänglich. Sie ruft den Dialog Auslegen-Parameter der Fundamentplatte auf.

Auslegen-Parameter der Fundamentplatte	×
Einstellungen für Berechnung und Bemessung in der Geotechnik	
Abmessungen der Fundamentplatte zu Iterationsbeginn: Mindestabmessungen Definieren x: 1700 + [m] y: 1100 + [m] Plattenstärke zu Iterationsbeginn d: 0.200 + [m]	$\frac{S_x}{S_y} = \frac{e_x}{e_y}$
Kriterien zum Vergrößem der Abmessungen x bzw. y Im Verhältnis der Lastausmitte Schrittweite ∆x : 0.050 ↔ [m] ∆y : 0.050 ↔ [m] Max. Verhältn. kürzerer/längerer Abmessung: 1 : 3.000 ☆ [-]	X SX Annual
Kriterien zum Vergrößem der Abmessung z Keine Erhöhung Höhe der Überschüttung Im einen konstanten Wert Schrittweite Δz : 0.020 mm [m] Max. Plattendickenverhältnis d/min(x,y) 1 : 3.000 mm [r]	Zusätzliche Einstellungen für die Erhöhung der Überschüttungshöhe: Überschüttung zu Iterationsbeginn ü: Überschüttung erhöhen, falls das Kriterium der frostfreien Einbindetiefe nicht erfüllt ist. (EN 1997-1, A 6.4(2)) [m] Frostfreie Einbindetiefe tr: 0.800 🔶 [m]
Einstellungen für Gleitsicherheitsnachweis	
Iterationsart Vergrößern von: Sete, auf die der passive Erddruck mit konstantem Wert wirkt Plattendicke d um einen konstanten Wert Schrittweite Δ: 0.020 ↔ [m] Sete, auf die der passive Erddruck wirkt und der Plattenstärke d im Verhältnis der Seite zur Plattendicke 1 : 1.000 ↔ [·]	
Einstellungen für Betonbemessung	Einstellungen für Iteration
Plattendicke d um konstanten Wert erhöhen Schrittweite \[\Delta d : 0.020 [\[\Delta v] [m]	Max. Anzahl der Iterationsschritte: 1000 🚖 [·]
	OK Abbrechen

Bild 2.34: Dialog Auslegen-Parameter der Fundamentplatte

Einstellungen für Berechnung und Bemessung in der Geotechnik

Es ist anzugeben, welche *Abmessungen der Fundamentplatte zu Iterationsbeginn* benutzt werden sollen (Mindestabmessungen oder benutzerdefinierte Startwerte).

Um einen konstanten Wert	-	
Im Verhältnis der Lastausmitte		
Im Verhältnis x und y beim Iterationsbeginn		
Um einen konstanten Wert		
Nur Seitenlänge x		
Nur Seitenlänge y		

Die Kriterien zum Vergrößern der Abmessungen x bzw. y steuern, wie die Parameter beim Auslegen in den Iterationsschritten verändert werden. In der Liste stehen mehrere Möglichkeiten zur Auswahl (siehe Bild links). Die Auslegung berücksichtigt zudem ein benutzerdefiniertes Grenzverhältnis zwischen den beiden Seitenlängen.

Für die Ermittlung der Plattendicke stehen folgende *Kriterien zur Vergrößerung der Abmessung z* zur Auswahl:

- Keine Erhöhung
- Höhe der Überschüttung
- Fundamentplattendicke

2 Eingabedaten

Um einen konstanten Wert
Um einen konstanten Wert
lm Anfangsverhältnis von d/x
lm Anfangsverhältnis von d/y
Im Anfangsverhältnis von d/min(x, v)

Bei der Option *Fundamentplattendicke* bietet die Liste verschiedene Möglichkeiten für die Auslegung. Für diesen Fall wird auch ein benutzerdefiniertes Grenzverhältnis zwischen Plattendicke und kleinster Seitenlänge berücksichtigt.

Die programmseitige Auslegung kann auch die Überschüttung erhöhen, falls das Kriterium der frostfreien Einbindung nicht erfüllt ist. Hierfür sind die Überschüttung \ddot{u} zu Iterationsbeginn und die Einbindetiefe t_f vorzugeben.

Einstellungen für Gleitsicherheitsnachweis

Dieser Abschnitt ist zugänglich, wenn in Maske 1.1 das Kontrollfeld *Passiven Erdwiderstand nach EN 1997-1 Anhang C berücksichtigen* aktiviert wurde (siehe Bild 2.11, Seite 12).

Mit den ersten beiden Auslegungsoptionen wird die *Seite* des Fundaments bzw. die *Plattendicke* iterativ vergrößert, bis der Nachweis der Gleitsicherheit erbracht ist. Beim Aktivieren der dritten Option kann ein benutzerdefiniertes Verhältnis zur Vergrößerung von Fundamentseite zu Fundamentdicke angegeben werden. Vergrößert sich in einem Iterationsschritt die Seitenlänge z. B. um 1 cm, wird bei einem Verhältnis von 1:1 die Plattendicke ebenfalls um 1 cm erhöht.

Einstellungen für Betonbemessung

In diesem Abschnitt ist die Schrittweite Δd zur Erhöhung der Plattendicke anzugeben, damit die Stahlbetonnachweise erfüllt werden.

Einstellungen für Iteration

Die Anzahl der Iterationsschritte dient als Obergrenze für die möglichen Rechendurchläufe.

2.2.3 Köcher

Köcher			
O Abmessungen definieren	Köcherhöhe	h: 1.310 🚔 [m]	2
Auslegen	Einbindetiefe der Stütze	t: 1.310 🚔 [m]	
		in x	in y
	Obere Köcherwandstärke	to: 27.00	37.00 🚔 [cm]
	Oberes Stützenspiel	ao: 10.00 🚔	10.00 🚔 [cm]
	Untere Köcherwandstärke	tu: 32.00 📩	42.00 🚔 [cm]
	Unteres Stützenspiel	au: 5.00	5.00 🚔 [cm]
	Innenwandneigung	α: 87.81 🚔	87.81 🚔 [*]

Bild 2.35: Abschnitt Köcher

Abmessungen definieren

Bei dieser Option sind die Eingabefelder zur Beschreibung der Köchergeometrie zugänglich.

Beim Fundamenttyp *Blockfundament* sind die Eingabefelder der oberen und unteren Köcherwandstärken gesperrt. Im Falle einer *Fundamentplatte* sind sämtliche Eingabefelder deaktiviert.

Falls der Köcher vom Programm ausgelegt wurde, können die ermittelten Abmessungen mit 🥏 importiert werden. Die Werte können dann angepasst werden, um gerundete Maße zu benutzen.

Auslegen

RF-/FUND Pro ermittelt die Abmessungen des Köchers nach den Erfordernissen, die sich aus der Stützen- und Plattengeometrie ergeben (siehe Bild 2.34).

2.2.4 Anordnung der horizontalen Bügel im Köcher

Anordnung der horizontalen Bügel im Köcher	
 Bügel, die die Stütze umschließen Bügel, die komplett in einer Köcherwand liegen 	

Bild 2.36: Abschnitt Anordnung der horizontalen Bügel im Köcher

In diesem Abschnitt ist festzulegen, ob die Bügel in den Köcherwänden *die Stütze umschließen* oder ob die Bügel jeweils *komplett in einer Köcherwand liegen* sollen.

Bei den Fundamenttypen *Blockfundament* und *Fundamentplatte* sind die Eingabefelder dieses Abschnitts gesperrt.

2.2.5 Benutzerdefinierte Bibliothek der Fundamentvorlagen

Benutzerdefinierte	Bibliothek der Fundamentvorlagen	
[]		

Bild 2.37: Abschnitt Benutzerdefinierte Bibliothek der Fundamentvorlagen

Die aktuelle Fundamentgeometrie kann mit der Schaltfläche [Speichern] in einer Bibliothek abgelegt werden. Dabei ist zunächst ist ein Name für die neue Vorlage anzugeben.

Name für neue Vorlage eingeben	×
Name der neuen Vorlage:	Köcherfundament 270/140 - 50
	OK Abbrechen

Bild 2.38: Dialog Name für neue Vorlage eingeben

Mit [OK] wird das Fundament in die Bibliothek der Fundamentvorlagen übergeben.

Benutzerdefinierte Bibliothek der Fu	ndamentvorlagen			×
Geometrie-Filter				
Fundamenttyp:				
Colix	-			
Calix	•			
Fundamentvorlage				
Name	Type De	scription		
Köcherfundament 270/140 - 50 Ca	alix		-	
Main Evendement 4				
Mein Fundament 1				
Description	Symbol Value	Unit	-	
Stütze				
Abmessung in x-Richtung	cx 0.300	m		
Abmessung in y-Richtung	cy 0.200	m		
Fundamentplatte				
Abmessung in x-Richtung	x 2.700	m	=	
Abmessung in y-Richtung	y 1.400	m		
Plattendicke	d 0.250	m		
🗆 Köcher				
Köcherhöhe	h 0.500	m		
Einbindetiefe Stütze	t 0.500	m		
Abmessung in x-Richtung				
Gesamte Köcherabmessung	d kx 0.750	m		
Obere Köcherwandstärke	t _{ox} 0.250	m		
Oberes Stützenspiel	a _{ox} 0.100	m		
Untere Köcherwandstärke	t _{ux} 0.300	m	Ŧ	
			_	
🖹 🔛 🗙				OK Abbrechen

Bild 2.39: Dialog Benutzerdefinierte Bibliothek der Fundamentvorlagen

2.3 Materialien

.3 Materialien		
Beton	Stahl	
Fundament: Beton C20/25 🗸 🔝	Betonstahlsorte: B 500 S (A)	
Anderen Beton für Köcher verwenden		nom c
Köcher: Beton C20/25		
Betondeckungen	Teilsicherheits- und Abminderungsbeiwerte	
nom c k : 5.50 (cm) nom c oben: 5.50 (cm) nom c unten: 5.50 (cm) nom c seitlich: 5.50 (cm)	BS-P / BS-T - für Beton γ₀: 1.500 + - für Betonstahl γ₅: 1.150 + Reduzierungsfaktor unter Berücksichtigung der Langzeit-Lastfaktoren 1.150 +	BS-A 1.300 ÷ 1.000 ÷ Köcherwand
nom d _{stütze} : 5.00 🔶 [cm]	- für Druck: α _{cc} : 0.850 -	0.850
Mindestbetondeckung nach Norm	- für Verbund: α _{et} : 1.000	1.000 nom c _{settlich}
Verfügbare Betonstahllagermatten	Bewehrungsstäbe Biegerollendurchmes	sser Fundamentplatte
Lieferprogramm: Deutschland - 2008-01. Q188A R 188A Q257A R257A Q335A R335A Q424A R424A Q524A R424A Q524A R524A	Vertügbare Für Stäbe: 5.0 dbr. ∞ 20: Ø.0 dbr. ∞ 0: Ø.0 dbr. ∞ 0:	4.000 ↔ Ø 7.000 ↔ Ø nerbüget 10.000 ↔ Ø 20.000 ↔ Ø
	[mm] 💽	

Bild 2.40: Maske 1.3 Materialien

In dieser Maske sind nicht nur die Materialien mit den Teilsicherheitsbeiwerten festzulegen, sondern auch die Vorgaben für die Bewehrung zu treffen.

Beton / Stahl

In den Listen der beiden Abschnitte kann die *Betongüte* und die *Betonstahlsorte* ausgewählt werden. Die Normierung des Materials basiert auf dem Nationalen Anhang, der in Maske 1.1 Basisangaben eingestellt ist.

Alternativ lassen sich die Beton- oder Betonstahlgüten über die Schaltflächen () festlegen. Im Dialog *Material aus Bibliothek übernehmen* werden auch die Kennwerte der Materialien angezeigt. Auch hier regelt der Nationale Anhang, welche Materialien zur Auswahl stehen.

Bei Köcherfundamenten sind unterschiedliche Betongüten für Fundamentplatte und Köcher möglich: Wird das Kontrollfeld Anderen Beton für Köcher verwenden angehakt, so kann in der Liste die neue Betongüte für den Köchers ausgewählt werden. So lässt sich z. B. die höhere Betongüte eines im Fertigteilwerk vorgefertigten Köchers bei der Bemessung erfassen.

Betondeckungen

In diesem Abschnitt ist die Betondeckung für die verschiedenen Seiten des Fundaments festzulegen. Die Bedeutung der Symbole ist anhand der Skizzen rechts in der Maske erkennbar.

Alternativ kann die Betondeckung aus den Normvorgaben ermittelt werden. Hierzu ist das Kontrollfeld *Mindestbetondeckung nach Norm* anzuhaken. Über die Schaltfläche wirden ist ein Dialog zugänglich, in dem die Betondeckungen c_{unten} , c_{oben} , $c_{seitlich}/c_{Köcher}$ aus Parametern ermittelt werden können (siehe Bild 2.41).

(XC2 Keine auf vorbereitete	▼ [-] ▼ [-] en Baugrunc ▼ [-]	6
(XC2 Keine auf vorbereitete	▼ [·] ▼ [·] en Baugrunc ▼ [·]	0
(XC2 Keine auf vorbereitete	 ▼ [·] ▼ [·] en Baugrunc ▼ [·] 	0
(XC2 Keine auf vorbereitete	▼ [·] ▼ [·] en Baugrunc ▼ [·]	0
(Keine auf vorbereitete	▼ [·] en Baugrunc ▼ [·]	0
(auf vorbereitete	en Baugrunc 🔻 [·]	
(auf vorbereitete	en Baugrunc 💌 [·]	
(3) Tab	elle 4.2		
	Bewehrungs- matten	Bewehrungs- stäbe	
ds:	1.25	2.00 [cm]	
Cmin,b :	1.25	2.00 [cm]	
nin,dur:	1.50	1.50 [cm]	
Cdur,γ∶	0.00	0.00 [cm]	
⊂dur,st∶	0.00	0.00 ≑ [cm]	
dur,add :	0.00	0.00 🔶 [cm]	
Cmin :	3.50	4.00 [cm]	
∆C dev ∶	1.50 🜲	1.50 🔶 [cm]	0
Cnom :	5.00	5.50 [cm]	
⊃v,min∶	5.00	5.50 [cm]	
	ds : min,b : dur,st : dur,st : cmin : Cmin : Coom : v.min :	Bewehrungs- matten ds: 1.25 :min,b: 1.25 :dur,st: 0.00 ↔ :dur,st: 0.00 ↔ ur,add: 0.00 ↔ Cmin: 3.50 Mc dev: 1.50 ↔ chom: 5.00	Bewehrungs- matten Bewehrungs- stäbe ds: 1.25 2.00 [cm] ::min,b: 1.25 2.00 [cm] :in,dur: 1.50 1.50 [cm] :dur,y: 0.00 [cm] [cm] :dur,st: 0.00 [cm] [cm] :dur,ad: 0.00 [cm] [cm] Cmin: 3.50 4.00 [cm] Chev: 1.50 [cm] [cm] Chom: 5.00 [cm] [cm]

Bild 2.41: Dialog Betondeckung nach Norm

Teilsicherheits- und Abminderungsbeiwerte

Dieser Maskenabschnitt ermöglicht es, die Teilsicherheitsbeiwerte für Beton und Betonstahl sowie die Reduzierungsfaktoren zur Berücksichtigung von Langzeitwirkungen anzupassen. Die Werte sind gemäß Nationalem Anhang voreingestellt. Dabei bestehen kleine Unterschiede in der Bezeichnung der Bemessungssituationen in den Spaltenüberschriften.

Bemessung nach Norm / NA EN 1992-1-1 + EN 1997-1 🔳 DIN 🔽 🎦 🗃 EU CEN BDS Bulgarien SN CSN Tschechien CYS Zypern DK Dänemark NEN NEN Niederlande NF Frankreich PN Polen SFS Finnland SIST 📷 Slowenien STN 🔤 Slowakei 🔚 SvenskS Schweden UNE Spanien UNI Italien ÖNORM Österreich

Falls EN 1992-1-1 + EN 1997-1 ohne landesspezifischen Nationalen Anhang ausgewählt wurde, wird *GR* für die Grundbemessungssituation und *AU* für die außergewöhnliche Bemessungssituation angezeigt. Dies trifft auch für einige Nationale Anhänge zu.

Wurde der deutsche Nationale Anhang vorgegeben, so lautet die Überschrift *BS-P / BS -T* für die ständige Bemessungssituation und *BS-A* für die außergewöhnliche Bemessungssituation.

Die Langzeit-Lastfaktoren α_{cc} und α_{ct} für Druck und Zug sind mit 0,85 voreingestellt, der Faktor α_{ct} für Verbund mit 1,00.

Mit der Schaltfläche 🕕 lassen sich die Standardwerte des Eurocode wiederherstellen.

Betonstahllagermatten / Bewehrungsstäbe / Biegerollendurch-

messer

Im Abschnitt *Verfügbare Betonstahllagermatten* kann ein Lieferprogramm in der Liste eingestellt werden. Als Standard ist das aktuelle Programm *Deutschland 2008-01-01* vorgegeben.

Verfügbare Betonstahllagermatten	Bewehrungsstäbe	Biegerollendurchmesser
Lieferprogramm: Deutschland - 2008-01. Q188A R188A Q257A R257A Q355A R335A Q424A R424A Q524A R524A Q636A	Verfügbare Stabduchmesser: 6.0 8.0 V 10.0 V 12.0 V 14.0 V 14.0 V 16.0 V 20.0 25.0 28.0	Für Stäbe: dbr.⊗<20:
	[mm]	

Ist das Lieferprogramm festgelegt, können die Matten durch Anhaken ausgewählt werden, die für die Bemessung des Fundaments infrage kommen.

Verfügbare Betonstahllagermatten ändern

Die zur Verfügung stehenden Matten können über die Schaltflächen unterhalb der Liste angepasst werden. Die Schaltflächen haben folgende Funktionen:

	Bewehrungsmatte aus Bewehrungsmattenbibliothek hinzufügen \rightarrow siehe Bild 2.43
₽↓	Bewehrungsmatten alphabetisch sortieren
	Alle Bewehrungsmatten selektieren
	Alle Bewehrungsmatten deselektieren
X	Selektierte Bewehrungsmatte löschen
0	Informationen zur selektierten Bewehrungsmatte anzeigen

Tabelle 2.6: Schaltflächen im Abschnitt Verfügbare Betonstahllagermatten

•

ieferprogramm	Nummer			
Deutschland - 2008-01-01 v yp Q-Matte R-Matte	Q188A Q257A Q335A Q424A Q524A Q636A			
Bewehrungskennwerte Gesamtquerschnitt der Längsstäbe	pro m	ðs, längs	1.88	Q188 cm ² /m
Gesamtquerschnitt der Querstäbe p	oro m	∃s, quer	1.88	cm ² /m
Längsstabdurchmesser, Innenberei	ch	ds,L1	0.60	cm
Längsstabdurchmesser, Randberei	ch	ds,L2	0.60	cm
Querstabdurchmesser		d _{s,Q}	0.60	cm
Abstand de Längsstäbe		aL	15.00	cm
Abstand der Querstäbe		aQ	15.00	cm
Mattenlänge		L	6.000	m
Mattenbreite		M	2.300	m
Gewicht je Matte		G _{Matte}	0.04	kN/m ³
Gewicht je m ³		G	0.00	kN/m ³
Überstände am Mattenrand, längs		Ps,längs	7.50	cm
Überstände am Mattenrand, quer		P s,quer	2.50	cm

Die Schaltfläche [Bewehrungsmatte hinzufügen] öffnet folgenden Dialog

Bild 2.43: Dialog Bewehrungsmatte aus Bibliothek hinzufügen

Die Schaltflächen im Dialog Bewehrungsmatte aus Bibliothek hinzufügen sind wie folgt belegt:

	Anwenden der selektierten Matte für die Liste der verfügbaren Matten
1	Neue Bewehrungsmatte erzeugen
P	Benutzerdefinierte selektierte Matte bearbeiten
₽↓	Matten alphabetisch sortieren
X	Selektierte benutzerdefinierte Matte löschen
	Benutzerdefinierte Datenbank exportieren
B	Benutzerdefinierte Datenbank übernehmen
Tabol	lo 2.7: Schaltflächen im Dialog <i>Rewahrungsmatte aus Ribliothek hinzufügen</i>

Tabelle 2.7: Schaltflächen im Dialog Bewehrungsmatte aus Bibliothek hinzufügen

Das *Lieferprogramm* ist diesem Dialog fest eingestellt; es entspricht dem ausgewählten Lieferprogramm. In den Abschnitten *Typ* und *Nummer* kann jeweils eine Matte selektiert werden. Daraufhin werde die *Bewehrungskennwerte* der Auswahl angezeigt.

Über die Schaltfläche 📝 kann die selektierte Matte in die Liste der vorhandenen Matten der Maske 1.3 aufgenommen werden.

Bewehrungsmattenbibliothek

Bearbeiten

Die Schaltfläche 🔊 neben der Lieferprogramm-Liste öffnet folgenden Dialog:

leterprogramm	Nummer			
Deutschland - 2008-01-01 -				
	Q257A			
yp	Q335A			
)-Matte	Q424A			
R-Matte	Q524A			
	Q636A			
lewehrungskennwerte				Q1884
Gesamtquerschnitt der Längsst	äbe pro m	as, längs	1.88	cm ² /m
Gesamtquerschnitt der Querstä	be pro m	as, quer	1.88	cm ² /m
ängsstabdurchmesser, Innenb	ereich	ds,L1	0.60	cm
ängsstabdurchmesser, Randb	ereich	ds,L2	0.60	cm
Ruerstabdurchmesser		ds,Q	0.60	cm
Abstand de Längsstäbe		aL	15.00	cm
Abstand der Querstäbe		aQ	15.00	cm
		L	6.000	m
Mattenlänge			2 300	m
Mattenlänge Mattenbreite		M	2.000	
Mattenlänge Mattenbreite Gewicht je Matte		M G _{Matte}	0.04	kN/m ³
Mattenlänge Mattenbreite Gewicht je Matte Gewicht je m ³		M G Matte G	0.04	kN/m ³ kN/m ³
Mattenlänge Mattenbreite Sewicht je Matte Sewicht je m ³ Oberstände am Mattenrand, lär	nas	M G Matte G	0.04	kN/m ³ kN/m ³ cm
Mattenlänge Mattenbreite Sewicht je Matte Sewicht je m ³ Dberstände am Mattenrand, lär Dherstände am Mattenrand, n	ngs er	M G Matte G Ps,längs	0.04	kN/m ³ kN/m ³ cm
Mattenlänge Mattenbreite Sewicht je Matte Sewicht je m ³ Dberstände am Mattenrand, lär Dberstände am Mattenrand, qu	ngs er	M G Matte G P s, längs P s, quer	0.04 0.00 7.50 2.50	kN/m ³ kN/m ³ cm cm
Mattenlänge Mattenbreite Gewicht je Matte Gewicht je m ³ Doerstände am Mattenrand, lär Doerstände am Mattenrand, qu	igs er	M G Matte G Ps,längs Ps,quer	0.04 0.00 7.50 2.50	kN/m ³ kN/m ³ cm cm

Bild 2.44: Dialog Bewehrungsmattenbibliothek bearbeiten

In diesem Dialog können die Inhalte der einzelnen Lieferprogramme bearbeitet sowie die vorhandenen Matten um benutzerdefinierte Matten erweitert werden.

Die Schaltflächen im unteren Bereich des Dialogs entsprechen denen des oben beschriebenen Dialogs *Bewehrungsmatte aus Bibliothek hinzufügen* (siehe Tabelle 2.7).

Über die Schaltfläche [Neue Bewehrungsmatte] öffnet sich folgender Dialog:

Nummer	Bewehrungseigenschaften			
01884	Gesamtquerschnitt der Längsstäbe pro m	a s,längs	2.20	cm ² /m
Q100/1	Gesamtquerschnitt der Querstäbe pro m	a _{s,quer}	2.20	cm ² /m
Categorien	Längsstabdurchmesser, Innenbereich	ds,L1	0.60	cm
Valegorien	Längsstabdurchmesser, Randbereich	ds,L2	0.60	cm
.ieferprogramm:	Querstabdurchmesser	ds,Q	0.60	cm
Deutschland - 2008-01-01 🔹 🍋 🔯	Abstand de Längsstäbe	aL	15.00	cm
	Abstand der Querstäbe	aQ	15.00	cm
Тур:	Mattenlänge	L	6.000	m
O-Matte	Mattenbreite	M	2.300	m
	Gewicht je Matte	G _{Matte}	0.04	kN/m ³
	Gewicht je m ³	G	0.00	kN/m ³
	Anzahl der Längsrandstäbe, links	n ds,L2,li		-
	Anzahl der Längsrandstäbe, rechts	filds,L2,re		-
	Überstände am Mattenrand, längs	P s,längs	7.50	cm
	Überstände am Mattenrand, quer	P s,quer	2.50	cm
	Kommentar			
	j.			
2			ОК	Abbreche

Bild 2.45: Dialog Bewehrungsmatte bearbeiten

2 Eingabedaten

In diesem Dialog können neue, benutzerdefinierte Matten angelegt werden, für die alle Parameter in der Tabelle *Bewehrungseigenschaften* frei eingegeben werden können.

Ferner kann mit der Schaltfläche 🛅 auch ein eigenes Lieferprogramm mit einem benutzerdefinierten Mattentyp angelegt werden, um z. B. bestimmte Listenmatten für die Bemessung zu hinterlegen.

Bewehrungsstäbe

Falls die ausgewählten Mattenquerschnitte bei der Bemessung der Fundamentplatte nicht ausreichen, müssen Zulagen in Form von Stabstahl eingelegt werden. Die möglichen Stabdurchmesser sind im Dialogabschnitt *Bewehrungsstäbe* anzugeben.

Bewehrun	igsstäbe
Verfügbar Stabdurch	e messer:
 6.0 ✓ 8.0 ✓ 10.0 ✓ 12.0 ✓ 14.0 ✓ 16.0 20.0 25.0 28.0 	
[mm]	

Bild 2.46: Auswahl der bemessungsrelevanten Bewehrungsstäbe

Über die Schaltfläche 📴 kann die Liste der verfügbaren Stabdurchmesser reduziert oder erweitert werden.

Liste der verfügbaren Durchmesser bearbeiten	×
Durchmesser für Bewehrungsstäbe (z.B. '8.0 10.0 12.	0')
	OK Abbrechen

Bild 2.47: Dialog Liste der verfügbaren Durchmesser bearbeiten

Unabhängig vom Fundamenttyp, der in der Maske 1.1 festgelegt wurde, muss für die Bemessung des Fundaments mindestens ein Stabstahlquerschnitt angegeben werden!

Falls die erforderliche Bewehrungsquerschnittsfläche größer ist als mit den ausgewählten Durchmessern möglich, gibt das Programm eine entsprechende Fehlermeldung aus:

RFEM64 Fehler Nr. 2282
Aus den selektierten Matten und Einzeleisen kann keine Kombination gefunden werden, deren vorhandener Stahlquerschnitt größer als der erforderliche Stahlquerschnitt erfaz = 12.43 [cm^2/m] ist.
Erweitern Sie die Auswahl der verwendbaren Matten und Einzeleisen in der Tabelle 1.3 Material.

Bild 2.48: Fehlermeldung bei zu geringen Stahlquerschnittsflächen

Die aktuelle Matten- und Stabstahlkonfiguration lässt sich mit der Schaltfläche [Als Standard setzen] (am unteren Ende der Maske) als Voreinstellung für weitere Bemessungsfälle speichern. In diesen können sie dann mit der Schaltfläche **Para** als [Standard] eingelesen werden.

2.4 Belastung

Die Maske 1.4 Belastung besteht aus mehreren Registern.

1.4 Belastung								
Tragwerk (ST	R) und Baugrund (GEO) Lagesicherheit (EQU) Charakteristische W	Verte						
Vorhandene L	Lastfälle / Kombinationen		Zu bemessen					
GZT LK1	1 351 F1							
GZT LK2	1 35*LE1 + 1 5*LE2							
GZT LK3	1 35° E1 + 1 5° E2 + 1 05° E3	=						
GZT LKA	1 35° E1 + 1 5° E2 + 1 05° E3 + 1 05° E4							
GZT LK5	1 35° E1 + 1 5° E2 + 1 05° E3 + 1 05° E4 + 1 05° E5	>						
GZT LK6	1 35° E1 + 1 5° E2 + 1 05° E3 + 1 05° E5							
GZT LK7	1 35" F1 + 1 5" F2 + 1 05" F4							
GZT LK8	1 35° E1 + 1 5° E2 + 1 05° E4 + 1 05° E5							
GZTI L K9	135" F1 + 15" F2 + 105" F5							
GZTI L K10	1.35" F1 + 1.5" F2 + 1.05" F3 + 0.9" F6							
GZT LK11	135" F1 + 15" F2 + 105" F3 + 0.9" F7							
GZT LK12	135" F1 + 15" F2 + 105" F3 + 0.9" F8	44						
GZT LK13	1.35*LE1 + 1.5*LE2 + 1.05*LE3 + 0.9*LE9							
G7T K14	1.35*LE1 + 1.5*LE2 + 1.05*LE3 + 1.05*LE4 + 0.9*LE6							
GZT LK15	1.35*LE1 + 1.5*LE2 + 1.05*LE3 + 1.05*LE4 + 0.9*LE7							
GZT LK16	1.35*LF1 + 1.5*LF2 + 1.05*LF3 + 1.05*LF4 + 0.9*LF8							
GZT LK17	1.35*LF1 + 1.5*LF2 + 1.05*LF3 + 1.05*LF4 + 0.9*LF9							
GZT LK18	1.35*LF1 + 1.5*LF2 + 1.05*LF3 + 1.05*LF4 + 1.05*LF5 + 0.9*LF6							
GZT LK19	1.35*LF1 + 1.5*LF2 + 1.05*LF3 + 1.05*LF4 + 1.05*LF5 + 0.9*LF7							
GZT LK20	1.35*LF1 + 1.5*LF2 + 1.05*LF3 + 1.05*LF4 + 1.05*LF5 + 0.9*LF8	-						
GZT LK GZT	T (STR/GEO) - Ständig / vorübergehend - Gl. 6.10 (175) 🔻 🖉	3						
Zusätzliche Bel	lastung		— Finzella	est				
📃 Auflast	🔤 🔲 Grundwasserspiegel			104				
🗖 Linienlasten	a: 10.000 4 [m]							
			Aulidat	Uberschuttung				
📃 Einzellasten	п Тур:							
	Ständig			GIMO				
Überschüttu	Uberschüttung (ständig)							
ü: 0.000 🕀 [m]								
γ:	0.00 ÷ [kN/m ³]							

Bild 2.49: Maske 1.4 Belastung, Register Tragwerk (STR) und Baugrund (GEO)

Vorhandene Lastfälle und Kombinationen

In dieser Spalte sind alle Lastfälle, Last- und Ergebniskombinationen aufgelistet, die in RFEM bzw. RSTAB angelegt wurden.

Mit der Schaltfläche lassen sich selektierte Einträge in die Liste *Zu Bemessen* nach rechts übertragen. Die Übergabe kann auch per Doppelklick erfolgen. Die Schaltfläche ibergibt die komplette Liste nach rechts.

Die Mehrfachauswahl von Lastfällen ist – wie in Windows üblich – mit gedrückter [Strg]-Taste möglich. So lassen sich mehrere Lastfälle gleichzeitig übertragen.

Lastfälle ohne Lastdaten oder Imperfektionslastfälle sind rot gekennzeichnet. Sie können nicht bemessen werden. Bei der Übergabe erscheint eine entsprechende Warnung.

Details...

Je nach Vorgabe im Dialog *Details* (siehe Bild 3.1, Seite 39) werden einzelne Register ein- oder ausgeblendet. Das Register *Aufschwimmen (UPL)* entfällt beispielsweise, wenn der Nachweis nach EN 1997-1 Abs. 2.4.7.4 nicht aktiviert ist.

Die Lastfälle sind separat für jede Bemessungssituation bzw. jeden Nachweis festzulegen.

Dies bedeutet: In jedem der aktiven Register

- Tragwerk (STR) und Baugrund (GEO)
- Aufschwimmen (UPL)
- Lagesicherheit (EQU)
- Charakteristische Werte

muss mindestens ein Lastfall oder eine Kombination zur Bemessung ausgewählt werden!

Am Ende der Lastfall-Liste sind Filtermöglichkeiten verfügbar, die die Auswahl der bemessungsrelevanten Lastfälle und Kombinationen erleichtern. Über den Filter lassen sich z. B. nur Ergebniskombinationen anzeigen. Der Wert in Klammern gibt an, wie viele Einträge für das jeweilige Filterkriterium vorliegen.

Bild 2.50: Filter zur Auswahl der Lastfälle und Kombinationen

Die Schaltflächen sind mit folgenden Funktionen belegt:

2 /	Alle Lastfälle in der Liste werden selektiert.
83	Die Auswahl der Lastfälle wird umgekehrt.

Tabelle 2.8: Schaltflächen im Abschnitt Vorhandene Lastfälle und Kombinationen

Zu bemessen

In der rechten Spalte werden die zur Bemessung gewählten Lastfälle, Last- und Ergebniskombinationen aufgelistet. Mit doer per Doppelklick lassen sich selektierte Einträge wieder aus der Liste entfernen. Die Schaltfläche de leert die ganze Liste.

Zusätzlich ist anzugeben, welche Bemessungssituation für die nachzuweisenden Lastfälle und Kombinationen vorliegt. Die Zuweisung kann nach einem Klick in das Eingabefeld erfolgen.

Zu bemessen			
GZT LK1	1.35*LF1	Ständig und vorübergehend	
GZT LK3	1.35*LF1 + LF6	Ständig und vorübergehend	-
GZT LK4	1.35*LF1 + 1.5*LF2	Ständig und vorübergehend	GR
		Außergewöhnlich	AU

Bild 2.51: Bemessungssituation zuweisen

Für die Nachweise des Tragwerks (STR) und des Baugrunds (GEO), des Aufschwimmens (UPL) und der Lagesicherheit (EQU) kann zwischen der Grundkombination *Ständig und vorübergehend GR* oder *Außergewöhnlich AU* ausgewählt werden. Diese beiden Optionen werden für die meisten Nationalen Anhänge in der Liste angezeigt.

Für den deutschen Nationalen Anhang enthält die Liste folgende Einträge:

- Ständig: BS-P
- Außergewöhnlich: BS-A
- Vorübergehend: BS-T

<u>S</u> tändige Einwirkung	•	
Ständige Einwirkung	G	
Ständig + Veränderlich	G + Q	

Details.

BS-

Ständig

Außergewöhnlich BS-A

ergehend

Im Register *Charakteristische Werte* ist es für den deutschen Nationalen Anhang möglich, ebenfalls eine Bemessungssituation zuzuweisen: Die für den Nachweis der Fundamentverdrehung ausgewählte Lastkonstellation kann nur ständige Lasten oder Lagerkräfte aus ständigen und veränderlichen Lasten enthalten. Hierfür muss natürlich im Dialog *Details* der Nachweis der Fundamentverdrehung nach EN 1997-1 A 6.6.5 aktiviert sein. Nach EN 1997-1 A 6.6.5 werden für den Nachweis der 1. Kernweite die Einwirkungen aus ständigen Lasten herangezogen. Für den Nachweis der 2. Kernweite werden die Einwirkungen aus ständiger und veränderlicher Last verwendet.

Zusätzliche Belastung

Im unteren Bereich der Maske können weitere Lasten für die Bemessung aktiviert werden. Die Grafik rechts stellt symbolhaft dar, wie die Zusatzlasten am Fundament wirken.

Zusätzliche Belastung				
V Auflast	~	🔲 Grundwasserspiegel	Q,	
Linienlasten		a: 10.000 🔶 [m]		Auflast Überschüttung
Einzellasten		Typ: Ständig v		
Uberschüttung (ständig)				GWS
ü: 0.200 🔶 [m]				
γ: 20.00 ÷ [kN/m	3]			

Bild 2.52: Abschnitt Zusätzliche Belastung

Auflast

Beim Anhaken des Kontrollfeldes öffnet sich der Dialog Auflast zur Eingabe der Parameter.

1	uflast						×
	Auflast						
	Nr.	Last p [kN/m²]	Dauer		Kommentar	ĥ	\triangleleft
	1	1.50	Ständig	•		=	
	2		Ständig				- P
	3		Veränderlich	45		-	
	4			_		-	
	6			-		-	
	7			-		-	X
	8						У
	9						
	10						
	11						
	12						
	13						
	14			_		-	
	15					Ŧ	
	Image: OK Abbrechen						

Bild 2.53: Dialog Auflast

Die Auflast wird konstant auf der gesamten Fläche des Fundaments als Flächenlast angesetzt, wobei die Querschnittsfläche der Stütze abgezogen wird. In der Spalte *Dauer* ist festzulegen, ob die zusätzliche Flächenlast *Ständig* oder *Veränderlich* wirkt.

Ein Kommentar zur Beschreibung der Zusatzlast erscheint auch im Ausdruckprotokoll.
Linienlasten

~	_	-	-	-	-	~
	-	-	-			
	-			з.	ε.	
				_		

Beim Anhaken des Kontrollfeldes öffnet sich der Dialog Linienlasten zur Eingabe der Parameter.

Linienlast	en								X
Linienlas	ten								
		Lastposi	tion [m]		Last				
Nr.	X1	¥1	X2	у2	p [kN/m]	Dauer	Kommentar		
1	0.500	0.500	0.500	0.500	10.00	Ständig 🗾		E	
2						Ständig			p-
3						Veränderlich			
4						5			
5									*2,y2
6									TUTTI
7									× × ×
8								-	
9								-	
10								-	
12								-	
12								-	
14								-	
15								-	
13									· ·
	×								OK Abbrechen

Bild 2.54: Dialog Linienlasten

Die *Lastposition* der Linienlast lässt sich über die Koordinaten ihres Anfangsund Endpunkts beschreiben. Die Angaben beziehen sich auf das Koordinatensystem des Lagers.

Die Linienlast kann nur als konstante Last definiert werden. In der Spalte *Dauer* ist festzulegen, ob die Last *Ständig* oder *Veränderlich* wirkt.

Einzellasten

Beim Anhaken des Kontrollfeldes öffnet sich der Dialog Einzellasten zur Eingabe der Parameter.

E	inzellast	en									X
ſ	Einzellas	sten									
		Lastposi	tion [m]		Last [kN]						
	Nr.	x	у	Px	Py	Ρz	Dauer		Kommentar		
	1	0.500	0.500	0.00	0.00	50.00	Ständig_	•		=	
L	2						Ständig	N			
L	3						Veränderlich	5			P
L	4										
L	5										
L	6										
L	/										× ×1.V1
L	8										
L	9									-	
L	11										
L	12									-	
L	13										
L	14										
L	15									-	
L											
	2	X									OK Abbrechen

Bild 2.55: Dialog Einzellasten

Die *Lastposition* ist auf das Koordinatensystem des Lagers bezogen. In den Spalten P_X , P_Y und P_Z können die Lastanteile eingegeben werden, die in X-, Y- und Z-Richtung vorliegen.

In der Spalte Dauer ist festzulegen, ob die Last Ständig oder Veränderlich wirkt.

Eingabedaten

Grundwasserspiegel

Bei der Bemessung des Fundaments kann auch die Einwirkung von Grundwasser berücksichtigt werden. Wird in Maske 1.1 die zulässige Sohlspannung manuell vorgegeben und der Nachweis des Gleitens deaktiviert, so ist der Grundwasserspiegel direkt einzugeben (siehe Bild links). Das Maß a beschreibt dabei die Tiefe des Grundwasserspiegels, gemessen von der Oberkante der Überschüttung bis zum Grundwasserspiegel.

Ist aufgrund der Art der Nachweisführung (keine Vorgabe der zulässigen Sohlspannung UND/ODER Gleitsicherheitsnachweis aktiviert) die Eingabe eines Bodenprofils erforderlich, so ist die Höhenlage des Grundwasserspiegels im Dialog Bodenprofil vorzugeben (siehe Kapitel 2.1.5 und Bild 2.16).

In der Typ-Liste ist anzugeben, ob das Grundwasser Ständig oder Veränderlich wirkt.

Überschüttung

Die Last infolge einer Überschüttung wird grundsätzlich als ständige Last angesetzt.

Ist das Kontrollfeld angehakt, kann die Höhe \ddot{u} der Überschüttung und die Wichte γ des Bodens angegeben werden. Für den Wert ü gilt das Maß ab Oberkante der Fundamentplatte. Die Wichte ist mit 20 kN/m³ voreingestellt.

Wurde im Dialog Auslegen-Parameter der Fundamentplatte (siehe Bild 2.34) vorgegeben, dass die Höhe der Überschüttung zur Erfüllung der geotechnischen Nachweise vergrößert werden soll, kann die Überschüttung in Maske 1.4 nicht deaktiviert werden.

Falls die Auslegung der Fundamentplattenabmessungen ergibt, dass die eingegebene Überschüttung für eine frostfreie Einbindetiefe nicht ausreichend ist, wird die Höhe der Überschüttung automatisch gemäß der Vorgabe im Dialog Auslegen-Parameter erhöht (siehe Bild 2.24).

In Maske 1.4 ist der automatisch erhöhte Wert der Überschüttung nicht ersichtlich. Die tatsächliche angesetzte Überschüttungshöhe ü wird stattdessen in der Ergebnismaske 2.1 Geometrie ausgewiesen.

🔽 Grund	lwasserspiegel
a :	5.000 🚔 [m]
Typ:	
Stän	dig 🔍
Stän	dig
Verä	nderlich
_	

Überschüttung (ständig) 0.850 ≑ [m]

ü:

γ:

[-25

20.00 🚔 [kN/m³]

Überschüttung mittels Bodenprofil definieren

Die Eingabefelder der *Überschüttung* sind deaktiviert, sobald ein Bodenprofil definiert wurde. Die Parameter der Überschüttung sind an das Bodenprofil gekoppelt.

Um die Höhe der Überschüttung anzupassen, ist mit der Schaltfläche [Bodenprofil bearbeiten] der Dialog *Bodenprofil* aufzurufen.

Zusätzliche Belastung			
Auflast		🔲 Grundwasserspiegel	
🔽 Linienlasten	P	a: 9.690 🔶 [m]	
🔽 Einzellasten		Тур:	
		Ständig 👻	
📝 Überschüttung (ständig)			
ü: 1.000 🔶 [m]	Reden	and fill hands altern	
γ: 18.00 ÷ [kN/m³]	boden	profil bearbeiten	

Im Bild 2.13 auf Seite 13 ist die Überschüttung im Bodenprofil mit einer Höhe von 1,00 m definiert. Die im Bodenprofil definierte Bodenschicht oberhalb der Fundamentplattenoberkante wird in Maske 1.4 als *Überschüttung* angezeigt (es ist nicht erforderlich, die Schicht im Bodenprofil mit "Überschüttung" zu kommentieren).

Bei der Definition des Bodenprofils ist es möglich, eine Überschüttung aus mehreren verschiedenen Bodenschichten zusammenzusetzen. Die Wichte γ wird hierbei anteilig zur jeweiligen Schichtdicke gemittelt und wie im Bild 2.57 gezeigt angegeben.

3 Berechnung

3.1 Detaileinstellungen

Details...

Vor dem Start der Berechnung sollten die Bemessungsdetails überprüft werden. Der entsprechende Dialog ist in jeder Maske des Zusatzmoduls über die Schaltfläche [Details] zugänglich.

Details	×			
Fundamentplatte	Position des Bemessungsschnittes			
Mindestbewehrung nach 9.2.1.1	Ourch Stützenmitte			
Ohne Biegebewehnung nach 12.9.3	Ourch Stützenrand			
	Durch Köcherwandmitte			
	Durch Außenseite der Köcherwand			
	O Definieren			
Bemessung in der Geotechnik nach EN 1997-1 für	Durchstanzen			
Lagesicherheit (2.4.7.2)	Iterative Berechnung des Rundschnittes			
Aufschwimmen (2.4.7.4)	Definition des Abstandes I _w vom Rundschnitt zum			
Grundbruch (6.5.2)	Stützenrand			
Gleiten (6.5.3)	Definierter Durchstanzkegel I _w innerhalb der			
Stark exzentrische Belastungen (6.5.4)	Fundamentplatte			
	Definierter Abstand Iw, def: 1.000 = *d			
Stahlbetonbemessung nach EN 1992-1-1 für	Faktor für Berücksichtigung der entlastenden kred: 1.000 🐳 [-]			
Durchstanzen (6.4)	Bodenpressung innerhalb des Rundschnitts			
Ubergreifungslänge der Köcherbewehrung (8.7.3)	Parameter β emittelt nach:			
	6.4.3(3) - Vollplastische Schubspannungsverte 🗸 ß:			
Lasten in Maske 1.4	Deaktivierung von Lagerlasten für die Fundamentbemessung			
Für alle Fundamente gleich	Lagerlast Deaktivierte Richtung			
Für (STR) und (GEO) gleiche Lasten anwenden	Px: Kräfte in +x-Richtung			
Berücksichtigung der Einflüsse aus Theorie II.	Py: Kräfte in +y-Richtung			
Ordnung nach 5.1.4 durch Erhöhung des Auflagemomentes um:	Pz: Kräfte in +z-Richtung			
y-Achse Faktor:	Mx: Positive Momente um x-Achse 🗸			
Ex-Achse Faktor:	My: Positive Momente um y-Achse 🚽			
	OK Abbrohen			
	Abbrechen			

Bild 3.1: Dialog Details

Die *Details*-Einstellungen gelten nur für das aktuell im Modul-Navigator ausgewählte Fundament, nicht für den gesamten Bemessungsfall.

Damit ist es möglich, innerhalb eines Bemessungsfalls mit unterschiedlichen Einstellungen z. B. bezüglich des Bemessungsschnitts zu arbeiten.

3.1.1 Fundamentplatte

Für die Fundamentplatte kann eine *Mindestbewehrung nach 9.2.1.1* vorgegeben werden. In diesem Fall wird die erforderliche Mindestquerschnittsfläche der Längszugbewehrung gemäß [1] 9.2.1.1 bei der Bemessung berücksichtigt.

Die Option *Ohne Biegebewehrung nach 12.9.3* befindet sich in Vorbereitung. Sie wird es ermöglichen, das Fundament gemäß [1] 12.9.3 als unbewehrtes Einzelfundament nachzuweisen.

3.1.2 Position des Bemessungsschnittes

In diesem Abschnitt ist die Lage des Schnittes anzugeben, für den die Biegebemessung der Fundamentplatte erfolgt. Diese Vorgabe gilt für die obere und für die untere Bewehrungslage der Fundamentplatte.

Die Position des Bemessungsschnitts für die untere und obere Lage der Bewehrung lässt sich auch individuell *Definieren*: Mit dem Anklicken dieser Option öffnet sich ein Dialog, in dem die Lage des Bemessungsschnitts über die Abstände *Delta-x* und *Delta-y* beschrieben werden kann.

Bild 3.2: Dialog Lage des Bemessungsschnittes der Fundamentplatte definieren

3.1.3 Bemessung in der Geotechnik nach EN 1997-1

Die Kontrollfelder dieses Abschnitts steuern, welche geotechnische Nachweise in die Bemessung einfließen.

Es muss mindestens ein geotechnischer Nachweis für die Bemessung ausgewählt sein!

Diese Vorgaben wirken sich auch auf die Lastfälle aus, die in Maske 1.4 für die Bemessung ausgewählt werden müssen. So entfällt z. B. das Register *Aufschwimmen (UPL)* in Maske 1.4, wenn der Nachweis gegen Aufschwimmen gemäß [2] 2.4.7.4 deaktiviert wurde.

Lagesicherheit (EQU)

Der Nachweis des Grenzzustandes der Lagesicherheit oder der Gesamtverschiebung des Tragwerks oder des Baugrundes ist nach [2] 2.4.7.2 wie folgt:

$$E_{dst,d} \le E_{stb,d} + T_d \tag{3.1}$$

In RF-/FUND Pro wird dieser Nachweis wie folgt realisiert:

$$M_{dst,i} \le M_{stb,i} \tag{3.2}$$

Das Moment *M* stellt dabei das an einer Kante *i* resultierende destabilisierende oder stabilisierende Moment dar.

Die Einwirkungen, die die Momente erzeugen, sind mit dem zugehörigen Teilsicherheitsbeiwert γ_F aus [2] A.2 abzumindern (stabilisierend) oder zu erhöhen (destabilisierend).

Aufschwimmen (UPL)

Bemessung in der Geotechnik nach EN	1997-1 für
Lagesicherheit	(2.4.7.2)
Aufschwimmen	(2.4.7.4)
Grundbruch	(6.5.2)
Gleiten	(6.5.3)
Stark exzentrische Belastungen	(6.5.4)
Fundamentverdrehung	(A 6.6.5)

Der Nachweis gegen Aufschwimmen muss nach [2] 2.4.7.4 so geführt werden, dass der Bemessungswert der Kombination von destabilisierenden ständigen und veränderlichen vertikalen Einwirkungen V_{dst,d} kleiner oder gleich der Summe des Bemessungswerts der stabilisierenden ständigen vertikalen Einwirkungen $\mathsf{G}_{\mathsf{stb},\mathsf{d}}$ und des Bemessungswerts eines eventuell vorhandenen

$$V_{dst\ d} \le G_{stb\ d} + R_d \tag{3.3}$$

mit

 $V_{dst,d} = |G_{dst,k} \cdot \gamma_{G,dst} + Q_{dst,k} \cdot \gamma_{O,dsk}|$ $G_{stb,d} = G_{stb,k} \cdot \gamma_{G,stb}$

zusätzlichen Widerstands R_d gegen Aufschwimmen ist.

Der zusätzliche Widerstand R_d infolge einer eventuell einwirkenden stabilisierenden Scherkraft kann, muss aber bei diesem Nachweis nicht berücksichtigt werden. In RF-/FUND Pro wird dieser Widerstand nicht berücksichtigt.

Die Teilsicherheitsbeiwerte γ sind [2] A.4 zu entnehmen.

Grundbruch

Der Nachweis des Grundbruchwiderstands gehört zum Grenzzustand STR / GEO-2 nach [2]. Bei diesem Nachweis findet ein Vergleich zwischen den Einwirkungen normal zur Gründungssohle und den Bemessungswerten der Widerstände statt.

$$V_d' \le R_d \tag{3.4}$$

Es kommt ein rechnerisches Verfahren gemäß [2] 6.5.2(2) zum Einsatz. In [2] Anhang D findet sich ein informatives Beispiel für eine analytische Ermittlung des Grundbruchwiderstands.

Die Einwirkungen und die Widerstände sind mit den Teilsicherheitsbeiwerten γ gemäß [2] A.3 abzumindern.

Wirksame Fläche bei ausmittiger Belastung

Beim Grundbruchnachweis wird nur ein Teil der tatsächlich vorhandenen Sohlfläche berücksichtigt – der Teil, in dem die resultierende Normalkraft in der Mitte angreift.

Die wirksame Fläche A' wird zu Beginn des Nachweises rechnerisch bestimmt.

$A' = B' \cdot L'$		(3.5)
$B' \leq L'$		
${\rm B'}={\rm B}-2{\rm e}_{\rm b}$	e _b ist zu Seite B gehörige wirksame Lastausmitte	
$L' = L - 2e_l$	e _l ist zu Seite L gehörige wirksame Lastausmitte	
	$\begin{aligned} A' &= B' \cdot L' \\ B' &\leq L' \\ B' &= B - 2e_b \\ L' &= L - 2e_l \end{aligned}$	$\begin{array}{l} A' = B' \cdot L' \\ B' \leq L' \\ B' = B - 2e_{b} \\ L' = L - 2e_{l} \end{array} \qquad e_{b} \text{ ist zu Seite B gehörige wirksame Lastausmitte} \\ \mathbf{e}_{l} \text{ ist zu Seite L gehörige wirksame Lastausmitte} \end{array}$

Gleiten

Nach [2] Abschnitt 6.5.3, muss ein Versagen durch Gleiten in der Sohlfläche nachgewiesen werden, wenn der Lastvektor nicht normal zu dieser Fläche steht.

Eine Gefahr des Gleitens besteht, wenn der Bemessungswert der parallel zu dieser Fläche resultierenden Kraft H_d in Richtung der Verschiebung größer ist als die Summe der Bemessungswerte von Widerstand gegen Gleiten R_{s.d} und Erdwiderstand R_{p.d}.

Es muss daher nachgewiesen werden, dass folgende Bedingung erfüllt ist:

$$H_d \le R_{s,d} + R_{p,d} \tag{3.6}$$

Die Widerstände sind mit den Teilsicherheitsbeiwerten γ gemäß [2] A3.3.1 abzumindern.

Widerstand gegen Gleiten im drainierten/konsolidierten Zustand

41

$$R_{s,d} = \frac{R_{s,k}}{\gamma_{R,h}} \tag{3.7}$$

$$R_{s,k} = V'_d \cdot \tan\left(\delta_{s,d}\right) \tag{3.8}$$

Für den Bemessungswert des Sohlreibungswinkels nach [2] 6.5.3(10)P kann bei Ortbetonfundamenten der Bemessungswert des kritischen Reibungswinkels φ_d angesetzt werden. Der kritische Reibungswinkel ist mit dem Teilsicherheitsbeiwert γ gemäß [2] A.3.2 abzumindern.

$$\delta_{\rm s,d} = \varphi_{\rm d} = \frac{\varphi_{\rm k}'}{\gamma_{\omega'}} \tag{3.9}$$

Nach [2] /NA:2010-12 muss $\delta_{s,k} \leq 35^{\circ}$ sein.

Widerstand gegen Gleiten im undrainierten/unkonsolidierten Zustand

$$R_{s,d} = \frac{R_{s,k}}{\gamma_{R,h}} \tag{3.10}$$

$$R_{s,k} = A' \cdot \frac{c_{uk}}{\gamma_{cu}} \tag{3.11}$$

Erdwiderstand

$$R_{p,d} = \frac{R_{p,k}}{\gamma_{R,v}} \tag{3.12}$$

$$R_{p,x,k} = 0.5 \left(\sigma_{p,o} + \sigma_{p,u}\right) \cdot d \cdot x \tag{3.13}$$

$$R_{p,y,k} = 0.5 \left(\sigma_{p,o} + \sigma_{p,u}\right) \cdot d \cdot y \tag{3.14}$$

$$R_{p,o} = c'_d \cdot K_{pch} + K_{agh} \cdot \left(p_{d,\text{perm}} + p_{d,\text{var}} + \gamma_{\ddot{u},d} \cdot \ddot{u} \right)$$
(3.15)

$$R_{p,u} = c'_d \cdot K_{pch} + K_{pgh} \cdot \left(\gamma_{1,d} + p_{d,\text{perm}} + p_{d,\text{var}} + \gamma_{\ddot{u},d} \cdot \ddot{u}\right)$$
(3.16)

$$p_{d,\text{perm}} = p_{k,\text{perm}} \cdot \gamma_Q \tag{3.17}$$

$$p_{d,\text{var}} = p_{k,\text{var}} \cdot \gamma_G \tag{3.18}$$

Falls $\alpha = \beta = \gamma = 0$, kann der passive Erddruck infolge Kohäsion wie folgt angenommen werden:

$$K_{pch} = 2 \cdot \sqrt{K_{pgh}} \tag{3.19}$$

Für [2] /NA:2010-12 sollte nach 6.5.3 (16) δ = 0 sein. Deshalb wird die obige Formel immer für die Bemessung nach dem deutschen Nationalen Anhang verwendet.

Stark exzentrische Belastungen

Gemäß [2] 6.5.4 müssen keine besonderen Vorkehrungen getroffen werden, wenn allgemein für eine rechteckige Sohlfläche gilt:

$$e_x \le e_{\mathsf{zul}} = \frac{1}{3} \cdot b_x \tag{3.20}$$

$$e_y \le e_{\mathsf{zul}} = \frac{1}{3} \cdot b_y \tag{3.21}$$

Fundamentverdrehung (nur für DIN EN 1997-1)

Bei der Bemessung nach deutschem Nationalen Anhang lautet die Überschrift *BS-P / BS-T* für die ständige Bemessungssituation und *BS-A* für die außergewöhnliche Bemessungssituation.

Der Nachweis der Fundamentverdrehung gemäß [2] A 6.6.5 überprüft, ob eine klaffende Fuge infolge ständiger Einwirkungen und ungünstigster Lastkombination über den Schwerpunkt der Sohlfläche hinaus auftritt.

Bemessung nach Norm / NA EN 1992-1-1 + EN 1997-1 🔽 🎦 💌 DIN CEN EU BDS Bulgarien CSN Tschechien CYS Zypern DK Dänemark NEN Niederlande NF Frankreich PN Polen SFS Finnland SIST Slowenien STN 🔤 Slowakei 🔚 SvenskS Schweden UNE Spanien UNI Italien ÖNORM Österreich

Ständige Einwirkungen

Die resultierende charakteristische Beanspruchung V_k in der Sohlfläche soll innerhalb der ersten Kernfläche liegen. Es werden nur Einwirkungen und keine Widerstände berücksichtigt.

Ungünstigste Kombination aus ständigen und veränderlichen Einwirkungen

Die resultierende charakteristische Beanspruchung V_k soll nicht außerhalb der zweiten Kernfläche liegen. Auch hier werden nur Einwirkungen berücksichtigt.

Nachweis, dass sich V_k innerhalb der ersten Kernfläche befindet:

$$\frac{e_x}{b_x} + \frac{e_y}{b_y} \le \frac{1}{6} \tag{3.22}$$

Nachweis, dass V_k nicht außerhalb der zweiten Kernfläche liegt:

$$\left(\frac{e_x}{b_x}\right)^2 + \left(\frac{e_y}{b_y}\right)^2 \le \frac{1}{9} \tag{3.23}$$

3.1.4 Stahlbetonbemessung nach EN 1992-1-1

Stahlbetonbemessung nach EN 1992-1-1 für ... Durchstanzen (6.4) Obergreifungslänge der Köcherbewehrung (8.7.3)

In diesem Abschnitt besteht die Möglichkeit, das *Durchstanzen* bei der Stahlbemessung zu deaktivieren. Die Auswahlfelder rechts im Abschnitt *Durchstanzen* sind dann unzugänglich.

Die Überprüfung der *Übergreifungslänge der Köcherbewehrung* gemäß [1] 8.7.3 steht nur für Köcherund Blockfundamente mit rauen Köcher- bzw. Wandinnenseiten zur Verfügung.

3.1.5 Durchstanzen

Dieser Abschnitt verwaltet die Parameter, die für die Durchstanznachweise relevant sind.

Durchstanzen	
Iterative Berechnung des Rundschnittes	
 Definition des Abstandes I_w vom Rundschnitt zum Stützenrand 	
Definierter Durchstanzkegel I _w innerhalb der Fundamentplatte	
Definierter Abstand I _{w, def} : 1.000	*d
Faktor für Berücksichtigung der entlastenden kred: 1.000 × Bodenpressung innerhalb des Rundschnitts	- [-]
Parameter β ermittelt nach:	
6.4.3(3) · Vollplastische Schubspannungsvertε 🗸 β:	[-]

Bild 3.3: Abschnitt *Durchstanzen*

Der kritische Rundschnitt kann durch eine *Iterative Berechnung* ermittelt oder über eine manuelle *Definition des Abstandes I_w* vorgegeben werden.

Das Kontrollfeld *Definierter Durchstanzkegel I_w innerhalb der Fundamentplatte* mitsamt Eingabefeld $I_{w,def}$ ist auch dann zugänglich, wenn der Durchstanznachweis im Abschnitt *Stahlbetonbemessung* deaktiviert wurde. Das Häkchen steuert die Lage des Durchstanzkegels bezüglich der Fundamentplatte. Liegt der Durchstanzkegel außerhalb der Platte, werden die Platten-Mindestabmessungen beim Auslegen mit dem Durchstanzkegel abgeglichen.

Über die Schaltfläche 📵 ist eine Grafik mit den Fundamentparametern zugänglich.

Bild 3.4: Dialog Informationen für raues Köcherfundament

Dieser Abschnitt bietet auch die Möglichkeit, den Anteil der günstig wirkenden Bodenpressungen beim Durchstanznachweis über einen *Faktor für Berücksichtigung der entlastenden Bodenpressung innerhalb des Rundschnitts* anzupassen.

Nach [1] 6.4.4 darf die Summe der Bodenpressungen innerhalb des Durchstanzkegels zu 100 % entlastend angesetzt werden, wenn der kritische Rundschnitt beim Durchstanznachweis der Fundamentplatte iterativ bestimmt wurde. Wird zur Vereinfachung der Berechnung der konstante Rundschnitt im Abstand von 1,0 d angenommen, dürfen 50 % der Summe der Bodenpressungen innerhalb des konstanten Rundschnitts entlastend angenommen werden.

Durchstanzen		
🔘 Iterative Berechnung des Rundschnittes		
Definition des Abstandes I _w vom Rundschnit Stützenrand	t zum	
Definierter Durchstanzkegel I _w innerhalb der Fundamentplatte		•
Definierter Abstand	lw, def:	1.000 🌲 *d
Faktor für Berücksichtigung der entlastenden Bodenpressung innerhalb des Rundschnitts	k _{red} :	0.500 🚔 [-]
Parameter β ermittelt nach:		
6.4.3(3) - Vollplastische Schubspannungsverte	β:	[-]

Bild 3.5: Faktor k_{red} in Abhängigkeit von definiertem Abstand

6.4.3(3) - Vollplastische Schubspannungsvertet 6.4.3(3) - Vollplastische Schubspannungsverteilun 6.4.3(6) - Konstante Faktoren nach Bild 6.21N Benutzerdefinierter Wert

Die Liste ermöglicht es, den *Parameter* β nach verschiedenen Möglichkeiten zu ermitteln. Der Lasterhöhungsfaktor kann unter Annahme einer vollplastischen Schubspannungsverteilung gemäß [1] 6.4.3(3) oder aus konstanten Faktoren nach [1] 6.4.3 (6) bestimmt werden. Zusätzlich besteht die Möglichkeit, den Wert benutzerdefiniert im Eingabefeld β einzutragen.

3.1.6 Lasten in Maske 1.4

Lasten in Maske 1.4							
Für alle Fundamente gleich							
Für (STR) und (GEO) gleiche Lasten anwenden							
Berücksichtigung der Einflüsse aus Theorie II. Ordnung nach 5.1.4 durch Erhöhung des Auflagermomentes um:							
y-Achse	Faktor:						
x-Achse	Faktor:						

Das Kontrollfeld Für alle Fundamente gleich steuert, ob die Belastung des ersten Fundaments auch für alle weiteren, neu hinzugefügten Fundamente angesetzt wird. Diese Option ist standardmäßig nicht aktiv, sodass jedes Fundament mit eigenen Belastungen bemessen wird.

Wird die Standard-Option Für (STR) und (GEO) gleiche Lasten anwenden deaktiviert, so können in Maske 1.4 Belastung die Lastfälle getrennt für die Stahlbetonbemessung und für die geotechnischen Nachweise eingegeben werden.

_			_
L	.4 Belastung		
	Tragwerk (STR)	Baugrund (GEO) Lagesicherheit (EQU) Charakteristische Werte	
	Vorhandene Las	stfälle / Kombinationen	
	G LF1	Eigengewicht 🔺	
	Qn A LF2	Nutzlast	
	Qs LF3	Schnee	
Ĩ			

Bild 3.6: Maske 1.4 Belastung mit getrennter Eingabe für Tragwerk (STR) und Baugrund (GEO)

Dieser Abschnitt ermöglicht auch die Berücksichtigung der Einflüsse aus Theorie II. Ordnung nach 5.1.4 durch Erhöhung des Auflagermoments. Dies kann z. B. für das Fundament einer Stahlbetonkragstütze zutreffen, die nach dem Modellstützenverfahren nach Theorie I. Ordnung bemessen wurde.

Sind die Kontrollfelder angehakt, können Faktoren für die y- und x-Achse festgelegt werden, mit denen das Einspannmoment beaufschlagt werden soll. Damit kann der Einfluss aus Theorie II. Ordnung berücksichtigt werden.

3.1.7 Deaktivierung von Lagerlasten für die Bemessung

Anhand der Kontrollfelder dieses Abschnitts lassen sich bestimmte Lagerlasten für die Bemessung unterdrücken. Es sind separate Vorgaben für die Lagerlasten P_x, P_y und P_z und die Lagermomente **M**_x und **M**_y möglich. Die Einstellungen gelten nur für den aktuellen Bemessungsfall.

Deaktivierung von Lag	gerlasten für die Fundamentbemessung	
Lagerlast	Deaktivierte Richtung	
P x:	Kräfte in +x-Richtung	Ŧ
V Py:	Kräfte in +y-Richtung	•
Pz:	Kräfte in +z-Richtung	-
▼ M _x :	Negative Momente um x-Achse	•
My:	Positive Momente um y-Achse	-

Bild 3.7: Abschnitt Deaktivierung von Lagerlasten für die Fundamentbemessung

Alle Kräfte in y-Richtung	
Kräfte in +y-Richtung	
Kräfte in -y-Richtung	
Alle Kräfte in v-Bichtung	

Nach dem Anhaken eines Lagerlast-Typs kann in der Liste ausgewählt werden, welche Kräfte bzw. Momente ignoriert werden sollen (in positive bzw. negative Richtung, alle).

Falls Komponenten der Lagerlast für die Bemessung unterdrückt sind, so wird dies nach der Berechnung in den Ergebnistabellen dokumentiert.

3.2 Mindestabmessungen

Köcherfundament mit glatten Köcherinnenseiten

Mindestabmessungen

Mindestseitenlängen aus Stützenabmessungen:

$$\begin{split} \mathbf{x} &= \mathbf{c}_{\mathbf{x}} + 2 \cdot (\mathbf{t}_{ox} + \mathbf{a}_{ox}) + 2 \cdot |\mathbf{e}_{\mathbf{x}}| \\ \mathbf{y} &= \mathbf{c}_{\mathbf{y}} + 2 \cdot (\mathbf{t}_{oy} + \mathbf{a}_{oy}) + 2 \cdot |\mathbf{e}_{\mathbf{y}}| \end{split}$$

© DLUBAL SOFTWARE 2016

v

⊿ ■ Dlubal

Mindestseitenlängen für kritischen Rundschnitt innerhalb Fundamentplatte:

$$x = \max \begin{cases} \mathsf{c}_{\mathsf{x}} + 2 \cdot (\mathsf{I}_{\mathsf{sw}}) + 2 \cdot |\mathsf{e}_{\mathsf{x}}| \\ \mathsf{c}_{\mathsf{x}} + 2 \cdot (\mathsf{t}_{\mathsf{ox}} + \mathsf{a}_{\mathsf{ox}}) + 2 \cdot |\mathsf{e}_{\mathsf{x}}| \end{cases}$$
$$y = \max \begin{cases} \mathsf{c}_{\mathsf{y}} + 2 \cdot (\mathsf{I}_{\mathsf{sw}}) + 2 \cdot |\mathsf{e}_{\mathsf{y}}| \\ \mathsf{c}_{\mathsf{y}} + 2 \cdot (\mathsf{t}_{\mathsf{oy}} + \mathsf{a}_{\mathsf{oy}}) + 2 \cdot |\mathsf{e}_{\mathsf{y}}| \end{cases}$$

mit I_{sw} Abstand zwischen Durchstanzkegel und Stützenrand

Mindesteinbindetiefe der Stütze

Mindesteinspanntiefe min t nach [1] 10.9.6.3:

 $min\,t=1,\!2\cdot c$

Empfohlene Mindesteinbindetiefe nach [1] /NA:2011-01:

 $min\,t_1=1,5\cdot c$

Köcherfundament mit rauen Köcherinnenseiten

Mindestabmessungen

Mindestseitenlängen aus Stützenabmessungen:

$$\begin{split} \mathbf{x} &= \mathbf{c}_{\mathbf{x}} + 2 \cdot (\mathbf{t}_{\mathsf{ox}} + \mathbf{a}_{\mathsf{ox}}) + 2 \cdot |\mathbf{e}_{\mathbf{x}}| \\ \mathbf{y} &= \mathbf{c}_{\mathbf{y}} + 2 \cdot (\mathbf{t}_{\mathsf{oy}} + \mathbf{a}_{\mathsf{oy}}) + 2 \cdot |\mathbf{e}_{\mathbf{y}}| \end{split}$$

Mindestseitenlängen für kritischen Rundschnitt innerhalb Fundamentplatte:

$$\begin{split} x &= c_x + 2 \cdot (t_{ox} + a_{ox}) + 2 \cdot (l_{sw}) + 2 \cdot |e_x| \\ y &= c_y + 2 \cdot \left(t_{oy} + a_{oy}\right) + 2 \cdot (l_{sw}) + 2 \cdot |e_y| \end{split}$$

mit I_{sw} Abstand zwischen Durchstanzkegel und Stützenrand

Mindesteinbindetiefe der Stütze

Die Minimaleinspanntiefe wird nach [4] Kapitel 16.3.3.1 berechnet.

$$e = |\frac{M}{P_z \cdot c}|$$

Variable	Bezeichnung
e	Bezogene Lastausmitte
М	Einspannmoment der Stütze an der Oberseite des Köchers
Pz	Normalkraft der Stütze
с	Stützenabmessung
L.	Statzenabinessang

Tabelle 3.1: Variablen zur Berechnung der Mindesteinbindetiefe

 $e \le 0,15$:

$$\begin{split} & \min t_1 = 1, 2 \cdot c \\ \textbf{0}, \textbf{15} < \textbf{e} < \textbf{2}, \textbf{00} : \\ & \min t_1 = \left(1, 2 + \frac{2, 0 - 1, 2}{2, 0 - 0, 15} \cdot (\textbf{e} - 0, 15)\right) \cdot c \\ & \textbf{e} \geq \textbf{2}, \textbf{00} : \\ & \min t_1 = 2, 0 \cdot c \end{split}$$

Details.

Wird bei der Eingabe in Maske *1.2 Geometrie* ein Mindestwert unterschritten (siehe Bild 2.35, Seite 25), so ersetzt das Programm diesen Wert automatisch durch den Mindestwert. Bei einer Vergrößerung der Fundamentplattendicke werden die Mindestseitenlängen automatisch neu berechnet.

Fundamentplatte

Für die Mindestabmessungen gelten in Abhängigkeit von der gewählten Plattendicke *d* und vorgegebenen Lage des kritischen Rundschnitts (siehe Dialog *Details*) folgende Bedingungen.

$$\rm d_{min}=20~cm$$

Mindestseitenlängen aus Stützenabmessungen:

$$\mathbf{x} = \mathbf{c}_{\mathbf{x}} + 2 \cdot |\mathbf{e}_{\mathbf{x}}|$$

$$y = c_y + 2 \cdot |e_y|$$

Mindestseitenlängen für kritischen Rundschnitt innerhalb Fundamentplatte:

$$\begin{aligned} \mathbf{x} &= \mathbf{c}_{\mathbf{x}} + 2 \cdot |\mathbf{l}_{\mathsf{sw}} + 2 \cdot |\mathbf{e}_{\mathbf{x}}| \\ \mathbf{y} &= \mathbf{c}_{\mathbf{y}} + 2 \cdot |\mathbf{s}_{\mathsf{sw}} + 2 \cdot |\mathbf{e}_{\mathbf{y}}| \end{aligned}$$

Variable	Bezeichnung
c _x	Stützenabmessung in x-Richtung
с _у	Stützenabmessung in y-Richtung
х	Fundamentplattenabmessung in x-Richtung
у	Fundamentplattenabmessung in y-Richtung
d	Fundamentplattendicke
e	Exzentrizität der Stütze
l _{sw}	Abstand zwischen Durchstanzkegel und Stützenrand

Tabelle 3.2: Variablen der Fundamentgeometrie

Blockfundament mit rauen Köcherinnenseiten

Mindestabmessungen

Für das Blockfundament gelten die gleichen Mindestdicken d_{min} und Mindestseitenlängen wie für die Fundamentplatte (siehe oben).

$$d_{min} = 20 \text{ cm}$$

Mindestseitenlängen aus Stützenabmessungen:

$$\begin{aligned} \mathbf{x} &= \mathbf{c}_{\mathbf{x}} + 2 \cdot \mathbf{a}_{\mathrm{ox}} + 2 \cdot |\mathbf{e}_{\mathbf{x}}| + 20 \text{ cm} \\ \mathbf{y} &= \mathbf{c}_{\mathbf{y}} + 2 \cdot \mathbf{a}_{\mathrm{oy}} + 2 \cdot |\mathbf{e}_{\mathbf{y}}| + 20 \text{ cm} \end{aligned}$$

Mindesteinbindetiefe der Stütze

Mindesteinbindetiefe nach [5] 2.6.4:

 $t=1,\!5\cdot c$

Blockfundament mit glatten Köcherinnenseiten

Mindestabmessungen

Mindestplattendicke:

 $d_{min} = h + max \left(15 \text{ cm}; 10 \text{ cm} + c_{nom,oben} + c_{nom,unten} \right)$

Mindestseitenlängen aus Stützenabmessungen:

 $\mathbf{x} = \mathbf{c}_{\mathbf{x}} + 2 \cdot \mathbf{a}_{ox} + 2 \cdot |\mathbf{e}_{\mathbf{x}}| + 50 \text{ cm}$

 $\mathbf{y} = \mathbf{c_v} + 2 \cdot \mathbf{a_{ov}} + 2 \cdot |\mathbf{e_v}| + 50 \text{ cm}$

Die Vergrößerung der Fundamentplatte um 50 cm (jeweils 25 cm auf beiden Seiten der Stütze) wird angesetzt, um ausreichend Raum für die vertikalen Bügel Vx und Vy vorzuhalten.

Mindestseitenlängen für kritischen Rundschnitt innerhalb der Fundamentplatte:

$$\begin{aligned} \mathbf{x} &= \mathbf{c}_{\mathbf{x}} + 2 \cdot |\mathbf{s}_{\mathsf{sw}} + 2 \cdot |\mathbf{e}_{\mathbf{x}}| \\ \mathbf{y} &= \mathbf{c}_{\mathsf{y}} + 2 \cdot |\mathbf{s}_{\mathsf{sw}} + 2 \cdot |\mathbf{e}_{\mathsf{y}}| \end{aligned}$$

Variable	Bezeichnung
h	Fundamentplattendicke
c _{nom}	Betondeckung
c _x /c _y	Stützenabmessung in x- bzw. y-Richtung
a _o /a _u	oberes bzw. unteres Stützenspiel
e_x/e_y	Exzentrizität in x- bzw. y-Richtung
l _{sw}	Abstand zwischen Durchstanzkegel und Stützenrand

Tabelle 3.3: Variablen zur Ermittlung der Mindestabmessungen

Mindesteinbindetiefe der Stütze

Wie beim Köcherfundament mit glatten Köcherinnenseiten (siehe oben) ist die Mindesteinbindetiefe min *t* nach [1] 10.9.6.3:

min t = 1,2 max $(c_x; c_y)$

Empfohlene Mindesteinbindetiefe nach [1] /NA:2011-01:

 $\min t_1 = 1,5 \max (c_x; c_y)$

Bei der Bemessung nach dem deutschen Nationalen Anhang wird der Mindestwert entsprechend berücksichtigt.

3.3 Start der Berechnung

In jeder Eingabemaske des Moduls RF-/FUND Pro kann die [Berechnung] über die gleichnamige Schaltfläche gestartet werden.

RF-/FUND Pro sucht nach den Ergebnissen der zu bemessenden Lastfälle, Last- und Ergebniskombinationen. Werden diese nicht gefunden, startet zunächst die RFEM- bzw. RSTAB-Berechnung zur Ermittlung der bemessungsrelevanten Schnittgrößen.

Die Berechnung kann auch aus der RFEM- bzw. RSTAB-Oberfläche gestartet werden: Im Dialog Zu berechnen (Menü **Berechnung** \rightarrow **Zu berechnen**) sind die Bemessungsfälle der Zusatzmodule wie Lastfälle oder Lastkombinationen aufgelistet.

erechnen								
stfälle / Ko	mbinationen / Modulfälle Ergebnistabellen							
icht berech	nete			Zur Berechnu	ng ausgewählt			
Nr.	Bezeichnung	-		Nr.		Bezeichnung		-
G LF1	Eigengewicht und Aufbau							
n LF2	Nutzlast							
n LF3	Nutzlast							
p LF4	Imperfektion gegen -Y							
LK1	Nutzlast in Feld 1							
LK2	Nutzlast in Feld 2							
LK3	Volllast		_					
EK1	Maßgebende Ergebniskombination		>					
FA1	RF-FUND Pro - Bemessung von Fundamenten		>>					
	A Contraction							
		-	_					
		=	4					
			4					
		-						
All-					1			
Alle	• [a	3						
	36							
							OK	Abbreche

Bild 3.8: Dialog Zu berechnen in RFEM/RSTAB

	Alle 🔽
	Alle
LF	Lastfälle
LK	Lastkombinationen
EK	Ergebniskombinationen
	Zusatzmodule

•

Falls die RF-/FUND Pro-Fälle in der Liste *Nicht berechnete* fehlen, ist die Selektion am Ende der Liste auf *Alle* oder *Zusatzmodule* zu ändern.

Mit der Schaltfläche Nerden die selektierten RF-/FUND Pro-Fälle in die rechte Liste übergeben. [OK] startet dann die Berechnung.

Ein Bemessungsfall kann auch über die Liste der Symbolleiste direkt berechnet werden: Stellen Sie den RF-/FUND Pro-Fall ein und klicken dann die Schaltfläche [Ergebnisse anzeigen] an.

Bild 3.9: Direkte Berechnung eines RF-FUND Pro-Bemessungsfalls in RFEM

Dluk

Der Ablauf der Bemessung kann anschließend in einem Dialog verfolgt werden.

FE-Berechnung	Wird ausgeführt		×
2	RFEM - Berechnung nach FEM RF-FUND Pro		
FE-SOLV	Fundament berechnen Lagesicherheit Aufschwimmen Grundbruch Stark exzentrische Belastungen Gleiten Biegebruchsicherheit der Platte Durchstanzen Bewehrung	Iteration des kritischen Rundsc 0.0611357 V selV Roce Anzahl Knoten Anzahl Fundamente	hnits aı/d 1.175 7 1
		vrechen] Diagramm

Bild 3.10: RF-FUND Pro Berechnung

3

4 Ergebnisse

Unmittelbar nach der Berechnung erscheint die Maske 2.1 Geometrie.

Der Navigator zeigt weitere Ergebnismasken an, in denen die maßgebenden Nachweise und die Bewehrungen angegeben sind. Die Masken lassen sich durch Anklicken der Einträge ansteuern. Mit den links dargestellten Schaltflächen wird die vorherige bzw. nächste Maske eingestellt. Das Blättern durch die Masken ist auch mit den Funktionstasten [F2] und [F3] möglich.

4

OK

[OK] sichert die Ergebnisse. RF-/FUND Pro wird beendet und es erfolgt die Rückkehr in das Hauptprogramm.

Das Kapitel 4 stellt die Ergebnismasken der Reihe nach vor. Die Auswertung und Überprüfung der Ergebnisse ist im Kapitel 5 ab Seite 63 beschrieben.

4.1 Geometrie

In Maske 2.1 werden sämtliche Abmessungen ausgegeben, die sich während des Auslegungsprozesses für die Fundamentplatte und ggf. den Köcher ergeben haben.

Bild 4.1: Maske 2.1 Geometrie

Die Listeneinträge lassen sich, wie in Windows üblich, mit [+] aufklappen und mit [-] reduzieren. Der Umfang der Ausgabe hängt vom Typ des Fundaments ab: Bei einer Fundamentplatte gibt es zwangsläufig keine Köcherabmessungen.

Rechts in der Maske wird das Fundament grafisch dargestellt. In diesem Grafikbereich können die aus RFEM bzw. RSTAB bekannten Mausfunktionen benutzt werden, um die Ansicht zu zoomen, zu verschieben oder zu drehen. Die Schaltflächen sind im Kapitel 5.1 auf Seite 63 erläutert.

Der obere Teil der Maske bietet eine nach Nachweiskriterien geordnete Zusammenfassung der maßgebenden Nachweise.

Der untere Teil enthält detaillierte Angaben zu dem Nachweis, der im oberen Teil markiert ist.

2.2 Maßgebende Nachweise							
	Ma	ßaebender	Nachweis				
Nachweisart	Knoten	LF	Kriterium				Kommentar zur Nachweisart
Lagesicherheit (EC. 7. 2.4.7.2)	1	LE2	0 478				
Aufschwimmen (EC 7, 2 4 7 4)	1	LF1	0.000				
Grundbruch (EC 7. 6.5.2)	1	LF3	0.428				
Stark exzentrische Belastungen (EC 7, 6,5,4)	1	LF5	0.448				
Gleiten (EC 7, 6.5.3)	1	LF1	0.244				
Biegebruchsicherheit Platte (EC 2, 6.1)	1	LF1	0.883				
Durchstanzen (EC 2, 6.4)	1	LF3	0.921				
Mindesteinbindetiefe der Stütze	1	LF1	0.611				
Biegebruchsicherheit Köcherwand	1	LF2	0.789				
Betonspannungen in den Köcherwänden (EC 2,	1	LF2	0.069				
Übergreifungslänge der Köcherbewehrung (EC 2,	1	LF2	0.643				
Knoten Nr.: 1 V LF / LK:	-	Max	0.921	≤1	۳		
Lagesicherheit (EC 7, 2.4.7.2) Knoten 1 LF2							
Bemessungswert aus Auflagerkräfte und -momente	9						
- Am Knoten				Nr.	1		
- Lastfall				LF	LF2		
Bemessungsituation				BS	BS-P		
- Vertikalkraft				P Z,d	100.00	kN	
 Horizontalkraft in x-Richtung 				P X,d	0.00	kN	
 Horizontalkraft in y-Richtung 				PY,d	0.00	kN	
 Moment um die x-Achse 				Mx,d	0.00	kNm	
Moment um die y-Achse				MY,d	327.00	kNm	
Machweis Nachweis							× ×
							Z

Bild 4.2: Maske 2.2 Maßgebende Nachweise

Nachweisart

Hier wird die Bezeichnung des geführten Nachweises angegeben.

Maßgebender Knoten / LF

Diese beiden Spalten geben Auskunft darüber, an welchem Lagerknoten die maßgebende Lagerkraft vorliegt und in welchem Lastfall bzw. welcher Last- oder Ergebniskombination sie auftritt.

Nachweiskriterium

Beim Auslegen eines Fundaments werden die Abmessungen immer so gewählt, dass das Nachweiskriterium $\leq 1,00$ und der jeweilige Nachweis damit erfüllt ist. Für die Option Abmessungen definieren werden Nachweise, die mit den vorgegebenen Abmessungen nicht erfüllt werden, mit Werten > 1,00 ausgegeben.

Falls ein Nachweis nicht erforderlich es, wird er mit 0.000 ausgewiesen.

Kommentar zur Nachweisart

Meldungen...

Die letzte Spalte enthält ggf. wichtige Hinweise für einen Nachweis. Diese sind in einem Dialog zusammengefasst, der über die Schaltfläche [Meldungen] zugänglich ist.

4 Ergebnisse

Ergebnisfilter

Unterhalb der Tabelle befindet sich eine Zeile mit einem Kontrollfeld und mehreren Auswahllisten.

E Knoten Nr.: 1 VIC	Max: 0.921 ≤ 1 🥹	% 1
Bild 4.3: Ergebnisfilter für Tabelle		

Wird das Kontrollfeld *Knoten Nr.* angehakt, so kann in der Liste ein Knoten ausgewählt werden, dessen Ergebnisse in der Tabelle erscheinen sollen. Zusätzlich besteht über die Liste *LF / LK* die Möglichkeit, die Ergebnisse lastfallweise zu filtern. Diese Funktion ist auch in einem DLUBAL-Blog beschrieben: https://www.dlubal.de/blog/12555

Details

Exemplarisch für den Aufbau einer Detailtabelle werden die Nachweise der Betonspannungen in den Köcherwänden vorgestellt.

Das Tabellen-Kontextmenü ermöglicht es, den gesamten Ergebnisbaum zu öffnen oder zu schließen: Klicken Sie mit der rechten Maustaste in den Detailbereich, um die links gezeigten Optionen aufzurufen.

E Köcherwand in x-Richtung	Kriterium	0.069	
Bemessungswert aus Auflagerkräfte und -momente			
- Am Knoten	Nr.	1	
— Lastfall	LF	LF2	
- Bemessungsituation	BS	BS-P	
— Vertikalkraft	P _{Z,d}	100.00	kN
 Horizontalkraft in x-Richtung 	Px,d	0.00	kN
 Horizontalkraft in y-Richtung 	PY,d	0.00	kN
Moment um die x-Achse	Mx,d	0.00	kNm
Moment um die y-Achse	MY,d	327.00	kNm
- 🕀 Obere Betonspannung	σ _{c,o,x}	1.372	N/mm ²
 Obere Horizontalkraft in x-Richtung 	H _{o,x}	299.54	kN
- Vorhandene Einbindetiefe	vorh t	1.310	m
- Gesamt-Köcherabmessung	dk,Y	1.240	m
Obere Köcherwandstärke	to,Y	0.370	m
🕀 Nachweis			
Vorhandene Betonspannung	σαχ	1.372	N/mm ²
Bemessungswert des Betons	fod	19.833	N/mm ²
Nachweiskriterium	Kriterium	0.069	
🛱 Köcherwand in y-Richtung	Kriterium	0.026	
Bemessungswert aus Auflagerkräfte und -momente			
- Am Knoten	Nr.	1	
- Lastfall	LF	LF3	
Bemessungsituation	BS	BS-P	
- Vertikalkraft	Pz,d	500.00	kN
 Horizontalkraft in x-Richtung 	Px,d	0.00	kN
 Horizontalkraft in y-Richtung 	PY,d	0.00	kN
Moment um die x-Achse	Mx,d	150.00	kNm
Moment um die y-Achse	MY,d	-150.00	kNm
Obere Betonspannung	σc.o.y	0.524	N/mm ²
 Obere Horizontalkraft in y-Richtung 	H _{o.y}	137.40	kN
Vorhandene Einbindetiefe	vorh t	1.310	m
- Gesamt-Köcherabmessung	d _{k,X}	1.140	m
Obere Köcherwandstärke	to,X	0.270	m
- Nachweis			
Vorhandene Betonspannung	σcy	0.524	N/mm ²
Bemessungswert des Betons	fod	19.833	N/mm ²
Nachweiskriterium	Kriterium	0.026	

Bild 4.4: Details zum Nachweis der Betonspannung in den Köcherwänden

Die Ausgabe ist nach den beiden Richtungen x und y untergliedert. Zuerst werden jeweils die maßgebenden Schnittgrößen angegeben, danach die erforderlichen Zwischenergebnisse. Am Ende kann das Nachweiskriterium abgelesen werden, das für beide Richtungen vorliegt.

200 av

្លឹង Ergebnisstruktur öffnen

Ergebnisstruktur schließen

Grafik

Das Grafikfenster in dieser Maske zeigt eine interaktive Grafik des Fundaments. Die Darstellung passt sich an die Ausgabezeile an, die in der Detailtabelle markiert wird.

Bild 4.5: Grafik der Druckspannungen

Das Bild oben zeigt beispielsweise die Verteilung der Druckspannungen unter der Fundamentplatte. Diese Spannungen sind in den Details des Durchstanznachweises enthalten.

Die Anzeigefunktionen und Schaltflächen sind im Kapitel 5.1 auf Seite 63 erläutert.

4.3 Erforderliche Bewehrung

Diese Maske besteht ebenfalls aus zwei Tabellen und einem Grafikbereich.

			Bewehrungs-				
Bewehrungsart	Pos	Name	Fläche	Einh	eit		Kommentar
Fundamentplatte, unten, in x, Bereich I	1	a _{x,I}	12.28	cm ² /i	n		
Fundamentplatte, unten, in y, Bereich I	2	ay,I	7.73	cm ² /r	n		
Fundamentplatte, oben, in x	3	ax	2.03	cm ² /r	n		
Fundamentplatte, oben, in y	4	ay	0.00	cm ² /r	n		
Horizontale Köcherbügel (allseitig außen)	5,8	Bu	3.884	cm ²			
Horizontale Köcherbügel BuX (in x-Richtung außen)	7,10	BuX	0.790	cm ²			
Horizontale Köcherbügel BuY (in y-Richtung außen)	6,9	BuY	2.317	cm ²			
Vertikale Köcherbügel Vx (Wandscheibe in x-Richtun	14	Vx	4.509	cm ²			
Vertikale Köcherbügel Vy (Wandscheibe in y-Richtun	11	VY	1.985	cm ²			
Bewehrung in Köcherwand in x-Richtung	12	Vx.Wand	0.000	cm ²			
Am Knoten		Nr.		1			
emessungswert aus Auflagerkräfte und -momente							
Am Knoten		Nr.		1			
Lastfall		LF		LF1			
Bemessungsituation		BS		BS-P			
Vertikalkraft		P.Z.d		300.00	kN		
Horizontalkraft in x-Richtung		Px,d		-50.00			
				50.00	kN		
Horizontalkraft in y-Richtung		PY,d		20.00	kN kN		
Horizontalkraft in y-Richtung Moment um die x-Achse		P _{Y,d} M _{X,d}		20.00 100.00	kN kN kNm		
Horizontalkraft in y-Richtung Moment um die x-Achse Moment um die y-Achse		Py,d Mx,d My,d		20.00 100.00 250.00	kN kN kNm kNm	-	
Horizontalkraft in y-Richtung Moment um die x-Achse Moment um die y-Achse emessungsstreifen		P _{Y,d} M _{X,d} M _{Y,d}		20.00 100.00 250.00	kN kN kNm kNm		
Horizontalkraft in y-Richtung Moment um die x-Achse Moment um die y-Achse emessungsstreffen Bemessungswert des einwirkenden Biegemoments		PY,d MX,d MY,d MEd,x,4	4	20.00 100.00 250.00 45.65	kN kNm kNm kNm		
Horizontalkraft in y-Richtung Moment um die x-Achse Moment um die y-Achse emessungsstreifen Bemessungswert des einwirkenden Biegemoments Bemessungswert des aufnehmbaren Moments		PY,d MX,d MY,d MEd,x,4 MRd,x,4	4	20.00 100.00 250.00 45.65 45.67	kN kNm kNm kNm kNm kNm		
Horizontalkraft in y-Richtung Momert um die x-Achse Momert um die y-Achse emessungsstreifen J Bemessungswert des einwirkenden Biegemoments J Bemessungswert des aufnehmbaren Moments Nachweis		PY,d MX,d MY,d MEd,x,4	4	20.00 100.00 250.00 45.65 45.67	kN kNm kNm kNm kNm kNm	=	
Horizontalkraft in y-Richtung Moment um die y-Achse emessungsstreffen J Bemessungswert des einwirkenden Biegemoments J Bemessungswert des aufnehmbaren Moments J Nachweis etails zur gewählten Bewehrung		PY,d MX,d MY,d MEd.x,4	4	20.00 100.00 250.00 45.65 45.67	kN kNm kNm kNm kNm	=	
Horizontalkraft in y-Richtung Moment um die x-Achse Moment um die y-Achse messungssterfen Bemessungswert des einwirkenden Biegemoments Bemessungswert des aufnehmbaren Moments Nachweis Inachweis Etalis zur gewählten Bewehrung Erforderliche Bewehrung pro Meter		PY,d MX,d MY,d MEd,x,4 eff a_x,1	4 4 (pro m	20.00 20.00 100.00 250.00 45.65 45.67 12.28	kN kNm kNm kNm kNm cm ² /m	=	
Horizontalkraft in y-Richtung Momert um die x-Achse Momert um die y-Achse emessungsstreffen J Bemessungswert des einvirkenden Biegemoments J Bemessungswert des aufnehmbaren Moments I Nachweis etails zur gewählten Bewehrung Erforderliche Bewehrung pro Meter Vorhandene Bewehrung pro Meter		PY,d MX,d MY,d MEd,x,4 eff a,x,1 vorh a,x	4 4 (pro m 	20.00 20.00 250.00 45.65 45.67 12.28 12.32	kN kNm kNm kNm kNm cm ² /m cm ² /m	ш (y z
Horizontalkraft in y-Richtung Momert um die x-Achse Momert um die y-Achse emessungsstreifen Bemessungswert des einwirkenden Biegemoments Bemessungswert des aufnehmbaren Moments Nachweis etalls zur gewählten Bewehrung Erforderliche Bewehrung pro Meter Vorhandene Bewehrung pro Meter Gewählte Breite des Bewehrungsbereiches I		PY,d MX,d MY,d MEd,x,4 MRd,x,4 eff a _{X,1} voh a _X yi (gew	4 4 (pro m c,i (pro ählt)	20.00 20.00 250.00 45.65 45.67 12.28 12.32 2.600	kN kNm kNm kNm kNm cm ² /m cm ² /m m		Y Z
Horizontalkraft in y-Richtung Momert um die y-Achse emessungsstreffen Bemessungswert des einwirkenden Biegemoments Bemessungswert des aufnehmbaren Moments Nachweis etails zur gewählten Bewehrung Erforderliche Bewehrung pro Meter Vorhandene Bewehrung pro Meter Gewählte Briet des Bewehrungsbereiches I Angesetzte Breite des Bewehrungsbereiches I		PY,d MX,d MY,d MEd,x,d eff a,x,1 vofh a,x yı (gew yı (ange	4 4 (pro m c, l (pro ählt) esetzt)	20.00 20.00 250.00 45.65 45.67 12.28 12.32 2.600 2.500	kN kNm kNm kNm kNm cm ² /m cm ² /m m		Y
Horizontalkraft in y-Richtung Momert um die x-Achse Momert um die y-Achse emessungsstreffen J Bemessungswert des einwirkenden Biegemoments J Bemessungswert des aufnehmbaren Moments I Nachweis etalis zur gewählten Bewehrung Erforderliche Bewehrung pro Meter Vorhandene Bewehrung pro Meter Gewählte Breite des Bewehrungsbereiches I Angesetzte Breite des Bewehrungsbereiches I Gewählte Grundmatte		PY,d MX,d MY,d MEd,x,4 MRd,x,0 eff a,x,1 vorh a,y y i (gew y i (gew y gever)	4 4 (pro m (pro m ahlt) sestzt) nnung	20.00 20.00 250.00 45.65 45.67 12.28 12.32 2.600 2.500 keine	kN kNm kNm kNm kNm cm ² /m cm ² /m m m		Y Z
Horizontalkraft in y-Richtung Momert um die x-Achse Momert um die y-Achse emessungsstreffen Bemessungswert des einwirkenden Biegemoments Bemessungswert des aufnehmbaren Moments I Nachweis etails zur gewählten Bewehrung Erforderliche Bewehrung pro Meter Vorhandene Bewehrung pro Meter Gewählte Breite des Bewehrungsbereiches I Angesetzte Breite des Bewehrungsbereiches I Gewählte Grundmatte Vorhandene Bewehrung aus Matte		PY,d MX,d MY,d Med,x.4 Med,x.4 wrd,d eff ax,l vorh ax y1 (gew y2 (gew Bezeich	4 4 4 (pro m c,1 (pro ainit) esetz1) nnungMatte	20.00 20.00 250.00 45.65 45.67 12.28 12.32 2.600 2.500 keine 0.00	kN kNm kNm kNm kNm cm ² /m m m cm ² /m m cm ² /m		Y Z
Horizontalkraft in y-Richtung Momert um die y-Achse emessungsstreffen Bemessungswert des einwirkenden Biegemoments Bemessungswert des aufnehmbaren Moments Nachweis etails zur gewählten Bewehrung Erforderliche Bewehrung pro Meter Vorhandene Bewehrung pro Meter Gewählte Breite des Bewehrungsbereiches I Angesetzte Breite des Bewehrungsbereiches I Gewählte Grundmatte Vorhandene Bewehrung aus Matte Gewählter Bewehrungsstab		PY,d MX,d MY,d Med.x,d erf ax,1 voh ax y1 (gew y1 (ange Bezeich voh ax d s	4 4 4 (pro m c, l (pro ählt) ssetzt) nnung c, Matte	20.00 20.00 250.00 45.65 45.67 12.28 12.32 2.600 2.500 keine 0.00 14.0	kN kN kNm kNm kNm cm ² /m m cm ² /m m cm ² /m mm		

Bild 4.6: Maske 2.3 Erforderliche Bewehrung

Bewehrungsart

In dieser Spalte ist beschrieben, für welchen Bereich des Fundaments die Bewehrung vorgesehen ist (Fundamentplatte, horizontale und vertikale Köcherbügel, Bewehrung in Köcherwand). Zudem wird jeweils angegeben, in welcher Richtung und Lage die Bewehrung anzuordnen ist.

Pos

Jede Bewehrung erhält eine Positionsbezeichnung. Sie ist dann im Bewehrungsplan (siehe Kapitel 5.3, Seite 67) unter dieser Positionsnummer zu finden.

Bewehrungsname

Hier werden die Bewehrungs-Kurzbezeichnungen als Symbole angegeben.

Bewehrungsfläche

In dieser Spalte werden die erforderlichen Stahlquerschnittsflächen ausgegeben.

Einheit

Die Einheit der Bewehrungsquerschnitte lässt sich ggf. wie auf Seite 74 beschrieben anpassen.

Details

Im unteren Bereich der Maske werden die Bemessungsdetails der Bewehrungsart aufgelistet, die in der Tabelle oben markiert ist.

Fundamentplatte, unten, in x, Bereich I Pos: 2 Name: axI			
Bemessungswert aus Auflagerkräfte und momente			
🛱 Bemessungsstreifen			
- → Bemessungswert des einwirkenden Biegemoments	MEd,x,4	45.75	kNm
→ Bemessungswert des aufnehmbaren Moments	MRd,x,4	45.78	kNm
🕀 Nachweis			
- Erforderliche Bewehrung	erf A _{x,4}	3.861	cm ²
Breite des Fundamentplattenstreifens	y Streif	0.287	m
Erforderliche Bewehrung pro Meter	erf a _{x,4} (pro n	13.43	cm ² /m
- Vorhandene Bewehrung	vorh A _{x,4}	3.927	cm ²
 Breite des Fundamentplattenstreifens 	y Streif	0.287	m
Vorhandene Bewehrung pro Meter	vorh a _x	13.66	cm ² /m
Nachweiskriterium	Kriterium	0.983	
🗇 Details zur gewählten Bewehrung			
Erforderliche Bewehrung pro Meter	erfax, I (prom	13.43	cm ² /m
Vorhandene Bewehrung pro Meter	vorh a _{x,1} (pro	13.66	cm ² /m
Gewählte Breite des Bewehrungsbereiches I	yı (gewählt)	2.300	m
Angesetzte Breite des Bewehrungsbereiches I	yı (angesetzt)	2.300	m
Gewählte Grundmatte	Bezeichnung	none	
Vorhandene Bewehrung aus Matte	vorh a _{x,Matte}	0.00	cm ² /m
Gewählter Bewehrungsstab	ds	0.020	m
Abstand der Bewehrungsstäbe	s	0.230	m
Bewehrungsfläche aus Bewehrungsstäben	vorh a (Stab)	13.66	cm ² /m

Bild 4.7: Detailtabelle für Bewehrung der Fundamentplatte, unten, in x, Bereich I

Grafik

Das Grafikfenster in dieser Maske zeigt eine interaktive Grafik des Fundaments. Die Darstellung passt sich an die Ausgabezeile an, die in der Detailtabelle markiert wird.

3D-Rendering

Mit der Schaltfläche [3D-Rendering] kann die Bewehrung in einem separaten Grafikfenster visualisiert werden. Diese Funktion ist im Kapitel 5.2 auf Seite 64 beschrieben.

Pläne

Über die Schaltfläche [Pläne] lassen sich die Bewehrungspläne des Fundaments darstellen (siehe Kapitel 5.3, Seite 67).

4.4 Untere Plattenbewehrung

In dieser Maske wird die Bewehrung für die Unterseite der Fundamentplatte ausgegeben.

Δ

Die vom Programm vorgeschlagene Plattenbewehrung kann hier auch geändert werden.

Bild 4.8: Maske 2.4 Untere Plattenbewehrung

Grundbewehrung

Im obersten Abschnitt wird die vorgeschlagene Grundbewehrung mit einer Positionsnummer angegeben. Die *Matte* kann über die Liste geändert werden. Sie enthält alle Mattentypen, die in Maske 1.3 für die Bemessung aktiviert wurden (siehe Bild 2.42, Seite 29).

Bewehrung in Richtung x / Bewehrung in Richtung y

In diesen beiden Abschnitten kann die von RF-/FUND Pro vorgeschlagene Stabbewehrung angepasst werden.

Bewehru	Bewehrung in Richtung x (Hauptbewehrung)											
		Länge	Stä	ibe	vort	n a _{sx} [cm ²	/m]	erfa _{sx}				
Pos.	Bereich	[m]	d [mm]	s [cm]	Stäbe	Matte	Summe	[cm ² /m]				
3	yl	0.575	12.0	12.0	9.42	3.35	12.77	12.74				
2	yll	1.150	20.0	13.5	23.27	3.35	26.62	26.26				
3	yl	0.575	12.0	12.0	9.42	3.35	12.77	12.74				
	Anderer Be	wehrungs	vorschlag.			Bewehr	ungsberei	che: 3 🔻				

Bild 4.9: Anpassen der Bewehrung (hier Hauptbewehrung in Richtung x)

Bewehrungsbereiche

In der Liste kann festgelegt werden, ob die Stabbewehrung in einen oder drei *Bewehrungsbereiche* eingeteilt wird.

Bei einem Bewehrungsbereich wird die aus dem Nachweis erforderliche Biegebewehrung auf die gesamte Plattenbreite angesetzt. Wenn drei Bewehrungsbereiche möglich sind, wird die Plattenbreite in drei Bereiche unterteilt. Die erforderliche Bewehrung wird dort gestaffelt eingelegt, was sich in den meisten Fällen als wirtschaftlicher erweist.

Δ

In der ersten Tabellenspalte wird jeweils die Positionsbezeichnung Pos. der Bewehrung angegeben.

Die zweite Spalte beschreibt den *Bereich* der Plattenbewehrung. Falls drei Bewehrungsbereiche eingestellt wurden, erhalten Sie zwei äußere Bewehrungsbereiche (im Bild 4.9 mit *yl* gekennzeichnet) und einen Bewehrungsbereich in Plattenmitte (im Bild 4.9 mit *yll* gekennzeichnet).

In der Spalte *Länge* sind die Abmessungen der einzelnen Bewehrungsbereiche angegeben, die in Richtung x bzw. y vorliegen. Diese Längen werden auch in der grafischen Bewehrungsverteilung für die Haupt- und Nebenbewehrungsrichtung dargestellt (siehe Bild 4.10).

In den Spalten *Stäbe, vorh* a_{sx} und *erf* a_{sx} wird die gewählte Bewehrung angegeben. Hier finden sich neben den Stabdurchmessern und -abständen die Stahlquerschnitte der erforderlichen und der vorhandenen Bewehrung.

Bild 4.10: Grafik der Bewehrungsverteilung

RF-/FUND Pro legt die Haupt- und Nebenbewehrungsrichtung entsprechend den Einwirkungen auf das Fundament fest. Wenn die Hauptbewehrung in x-Richtung orientiert ist, liegt die Bewehrung in x-Richtung in der untersten Lage.

4 Ergebnisse

Anderer Bewehrungsvorschlag

Anderer Bewehrungsvorschlag...

Über die Schaltfläche [Anderer Bewehrungsvorschlag] kann eine alternative Bewehrung für die Platte ausgewählt werden. Es öffnet sich der Dialog *Anderen Bewehrungsvorschlag wählen*.

Matte:	keine 🔹							
Bewehru	ng in Richtung y (Neber	ibewehr	ung)					
Bereich I:	:							
Vorschlag	Grund-	Stá	ibe	vorh	a _{s,y} [cr	m²/m]	erfa _{s,y}	
Nr.	matte	d [mm]	s [cm]	Stäbe	Matte	Summe	[cm ² /m]	Г
1	keine	14.0	25.0	6.16	0.00	6.16	13.33	Γ
2	keine	14.0	24.0	6.41	0.00	6.41	13.33	
3	keine	14.0	23.0	6.69	0.00	6.69	13.33	
4	keine	14.0	22.0	7.00	0.00	7.00	13.33	•
Bereich II	:							
Vorschlag	Grund-	Stá	ibe	vorh	as,y[cr	m²/m]	erfa _{s,y}	4
Nr.	matte	d [mm]	s [cm]	Stäbe	Matte	Summe	[cm ² /m]	
1	keine	14.0	25.0	6.16	0.00	6.16	28.13	
2	keine	14.0	24.0	6.41	0.00	6.41	28.13	
3	keine	14.0	23.0	6.69	0.00	6.69	28.13	
4	keine	14.0	22.0	7.00	0.00	7.00	28.13	•

Bild 4.11: Dialog Anderen Bewehrungsvorschlag wählen (hier: Nebenbewehrung)

In diesem Dialog kann eine andere Matte als Grundbewehrung festgelegt werden (alle Matten gemäß Maske *1.2 Material* möglich). Ferner ist zu beachten, dass die Matten-Grundbewehrung nur für die Hauptbewehrungsrichtung vorgegeben werden kann. Im Dialog zum Ändern der Nebenbewehrungsrichtung wird die Matte der Hauptbewehrungsrichtung voreingestellt. Die Mattenliste ist – wie im Bild 4.11 dargestellt – nicht zugänglich.

In den Tabellen kann eine alternative Bewehrung für jeden *Bereich* ausgewählt werden. Die Kombinationen aus Matten- und Stabstahlbewehrung sind fest vorgegeben; Stabdurchmesser oder Abstände lassen sich hier nicht beliebig ändern.

Die Kombinationen von Bewehrungen sind aufsteigend nach den vorhandenen Bewehrungsquerschnittsflächen *vorh as* sortiert. In der Liste aller möglichen Bewehrungskombinationen kann der gewünschte Vorschlag per Mausklick ausgewählt werden.

[OK] übergibt die neue Bewehrung dann in Maske 2.4.

Berechnung

Wurde die Bewehrung für die Haupt- oder Nebenrichtung geändert, müssen die Ergebnisse neu berechnet werden. Dies ist über die Schaltfläche [Berechnung] möglich. Sie ist nach jeder Änderung der Bewehrung zugänglich.

4.5 Obere Plattenbewehrung

.5 Obere	Plattenbe	wehrung	I						
Grundbe	wehrung								Bewehrungsverteilung
Position:		Ma ke	tte: eine	-					yl
Bewehru Pos. keine	Anderer Be	tung x (Ha Länge [m] 2.300 wehrungs	vorschlag.	rrung) be s [cm] -	vorh Stäbe 0.00	a _{sx} [cm ² Matte 0.00	/m] Summe 0.00	erfa _{sx} [cm²/m] 0.00	1 2 3 4
Bewehru Pos.	ung in Rich Bereich	tung y (Ne Länge [m]	ebenbewe Stä d [mm]	hrung) be s [cm]	vorh Stäbe	asy[cm ² Matte	²/m] Summe	effa _{sy} [cm²/m]	
keine	xl	2.300	-	-	0.00	0.00	0.00	0.00	
	Anderer Be	wehrungs	vorschlag.						

Bild 4.12: Maske 2.5 Obere Plattenbewehrung

Der Aufbau und die Eingabemöglichkeiten der Maske 2.5 sind analog zur Maske 2.4 Untere Plattenbewehrung (siehe Kapitel 4.4). Auch hier kann alternativ zur vorausgelegten Bewehrung eine Bewehrungskombination aus einer Liste ausgewählt werden.

Der einzige Unterschied zur Maske 2.4 besteht darin, dass hier keine Staffelung der Bewehrung möglich ist: Auf alle acht Bemessungsstreifen wird das gleiche Bemessungsmoment angesetzt.

4

4.6 Köcherbewehrung

In dieser Maske wird die Bewehrung des Köchers ausgegeben. Die vom Programm vorgeschlagene Köcherbewehrung kann hier auch geändert werden.

Beim Fundamenttyp Fundamentplatte steht diese Maske nicht zur Verfügung.

Bu 3884 4021 16 43.7 2 2 2 0 Buy 2317 4021 16 43.7 2 2 2 0 Bux 0.790 2011 16 43.7 2 2 2 0 Buy 2317 4021 16 43.7 1 2 1 20 Buy 3884 10053 16 87.3 0 5 5 15 Bux,u 0.790 12.064 16 87.3 0 6 6 15 Vx 4.509 4.524 12 13.2 2 2 2 13.2 Vy 1985 2.62 12 3.2 0 2 2 20 Vy 1985 2.62 12 3.2.8 0 2 2 20 Vy,Wand 3.219 4.524 12 32.8 0 2 2 20 <th></th> <th>Bewehrung</th> <th>enf A_s</th> <th>vorh As</th> <th>d</th> <th>Verlegebreite</th> <th>Anzał</th> <th colspan="2">Anzahl der Bewehrung</th> <th>Abstand</th> <th>Meldung</th>		Bewehrung	enf A _s	vorh As	d	Verlegebreite	Anzał	Anzahl der Bewehrung		Abstand	Meldung
Bu 3.884 4.021 16 43.7 2 16 16 16 16 17 3 0 6 6 15 3 3 2 1 1 1 10 3 3 20 3 3 20 3 3 20 3 3 20 3 3 20 3 3 20 3 3 20 3 3 2			[cm ²]	[cm ²]	[mm]	[cm]	erforderl.	möglich	gewählt	[cm]	-
Buy 2317 4021 16 43.7 2 2 2 20 Bux 0.790 2.011 16 43.7 1 2 1 20 Bux 0.838 10.053 16 87.3 0 5 5 15 Bux,u 0.790 12.064 16 87.3 0 6 6 15 Bux,u 0.790 12.064 16 87.3 0 6 6 15 Vx 4.509 4.524 12 13.2 2 2 2 13.2 Vx 4.509 4.524 12 3.2 1 1 10 Vx,Wand 0.000 4.712 10 44 0 3 3 20 Vy 1.985 2.262 12 3.28 0 2 20 Vy.Wand 3.219 4.524 12 3.28 0 2 20		Bu	3.884	4.021	16	43.7	2	2	2	20	
Bux 0.790 2.011 16 43.7 1 2 1 20 Buu 3.884 10.053 16 87.3 0 5 5 15 Buy,u 2.317 12.064 16 87.3 0 6 6 15 Vx 4.509 4.524 12 13.2 2 2 13.2 Vy 1.985 2.262 12 3.2 1 1 10 Vx.Wand 0.000 4.712 10 44 0 3 3 20 Vy.Wand 3.219 4.524 12 32.8 0 2 2 20		Buy	2.317	4.021	16	43.7	2	2	2	20	
Buy 3.884 10.053 16 87.3 0 5 5 15 Bux,u 2.317 12.064 16 87.3 0 6 6 15 Bux,u 0.790 12.064 16 87.3 0 6 6 15 Vx 4.509 4.524 12 13.2 2 2 2 13.2 Vy 1.885 2.262 12 3.2 1 1 10 Vxwand 0.000 4.712 10 44 0 3 3.20 Vy,Wand 3.219 4.524 12 32.8 0 2 2 20		Bux	0.790	2.011	16	43.7	1	2	1	20	
Bur,u 2317 12.064 16 87.3 0 6 6 15 2 Bux,u 0.790 12.064 16 87.3 0 6 6 15 4 Vx 4.509 4.524 12 13.2 2 2 2 13.2 1 Vy 1385 2.262 12 3.2 1 1 10 2 Vx.Wand 0.000 4.712 10 44 0 3 3 20 Vy.Wand 3.219 4.524 12 32.8 0 2 2 20		Buu	3.884	10.053	16	87.3	0	5	5	15	
0 Bux,u 0.790 12.064 16 87.3 0 6 6 15 4 Vx 4.509 4.524 12 13.2 2 2 2 13.2 1 Vy 1.985 2.262 12 3.2 1 1 10 2 Vx.Wand 0.000 4.712 10 44 0 3 3 20 5 Vy.Wand 3.219 4.524 12 32.8 0 2 2 20)	Bury,u	2.317	12.064	16	87.3	0	6	6	15	
4 Vx 4.509 4.524 12 13.2 2 2 13.2 1 Vy 1.985 2.262 12 3.2 1 1 10 2 Vx, Wand 0.000 4.712 10 44 0 3 3 20 5 Vy, Wand 3.219 4.524 12 32.8 0 2 2 20	0	Bu x,u	0.790	12.064	16	87.3	0	6	6	15	
1 Vy 1.985 2.262 12 3.2 1 1 1 10 2 Vx.Wand 0.000 4.712 10 44 0 3 3 20 5 Vy.Wand 3.219 4.524 12 32.8 0 2 2 20	4	Vx	4.509	4.524	12	13.2	2	2	2	13.2	
2 Vx,Wand 0.000 4.712 10 44 0 3 3 20 5 Vy,Wand 3.219 4.524 12 32.8 0 2 2 20	1	VY	1.985	2.262	12	3.2	1	1	1	10	
5 Vy.Wand 3.219 4.524 12 32.8 0 2 2 20	2	V _{x,Wand}	0.000	4.712	10	44	0	3	3	20	
	5	Vy,Wand	3.219	4.524	12	32.8	0	2	2	20	
	nmen	tar									

Bild 4.13: Maske 2.6 Köcherbewehrung

In der oberen Tabelle werden die einzelnen Positionen der Köcherbewehrung mit den Bewehrungsquerschnitten sowie Durchmesser, Anzahl und Abstand der Stäbe angegeben.

Die Grafik zeigt eine gerenderte Darstellung der Köcherbewehrung an. Durch einen Klick auf eine Position in der Tabelle wird diese in der Grafik grau markiert. Auch hier können die aus RFEM bzw. RSTAB bekannten Mausfunktionen benutzt werden, um die Ansicht zu zoomen, verschieben oder drehen. Die Schaltflächen sind im Kapitel 5.1 auf Seite 63 erläutert.

Die vorausgelegte Köcherbewehrung lässt sich in den Spalten ändern, die weiß hinterlegt sind. Die Werte in grau hinterlegten Spalten sind vom Programm vorgegeben und unveränderbar.

Folgende Änderungen können an der Bewehrung vorgenommen werden:

- Durchmesser der Bewehrung
- Gewählte Anzahl der Bewehrung
- Abstand der Bewehrung

Der Stabdurchmesser *d* kann über die Liste geändert werden. Für die Auswahl gilt es zu berücksichtigen, dass die Bewehrung mit ihrem Stab- und Biegerollendurchmesser auch in den Köcherwänden untergebracht werden muss.

Die Spalten *gewählte Anzahl der Bewehrung* und *Abstand* stehen in Wechselwirkung miteinander. Dort kann die Stabanzahl oder der Stababstand angepasst werden (unter Beachtung der möglichen Verlegebreite). Beim Ändern des Abstands wird die Anzahl der möglichen Bewehrungsstäbe automatisch angepasst. Verkleinert man z. B. den Abstand, wird in Spalte *möglich* die Anzahl

© DLUBAL SOFTWARE 2016

der Stäbe angezeigt, die sich in der angegebenen *Verlegebreite* unterbringen lässt. Mit dieser Zielvorgabe kann dann die gewünschte Anzahl der Stäbe eingegeben werden.

Falls umgekehrt die Anzahl an gewählten Bewehrungsstäben geändert wird, passt sich der Abstand zwischen den Bewehrungsstäben automatisch an.

Berechnung

Bei Änderungen ist es erforderlich, die Köcherbewehrung neu zu berechnen. Dies ist über die Schaltfläche [Berechnung] möglich.

Wenn die geänderten Eingaben zu Fehlern beim Auslegen der Bewehrung führen, wird die problematische Position in der Tabelle rot markiert. Im Abschnitt *Kommentar* erscheint ein Hinweis, der für das erneute Anpassen der Bewehrung hilfreich ist.

4.7 Stahlliste

./ Staniliste											
Allgemein											
Fundament Nr. : '	1				Betonst	ahl: 8 500) S (A)				
An Knoten : 1											
Anzahl der Funda	imente : 1										
Bezeichnung : Fu	ndament aus Har	ndbuchbeispiel									
Untere und obere	e Lagermatten										
Pos	Hauptbewehrung Mattentyp			Gewicht	Fläc	he ohne 🕯	Stoß	Gewicht	t pro Fun	dament	Gesamtgewicht
Nr.	-richtung			[kg/m ²]		[m²]			[kg]		[kg]
1	x-Richtung) Q	257A	4.1		9.37			38.42		38.42
Zugelegte Bewel	hrungsstäbe und	Köcherbewehr	ing								
Pos	Anzahl	Gesamt-	ø	Schnitt-				Ge	samtlän	ge	
Nr.	pro	anzahl	[mm]	länge					[m]		
	Fundament			[cm]	Ø10	Ø12	Ø14	Ø16	Ø20		
2	20	20	12	343.9		68.79					
3	16	16	12	271.1		43.37					
4	12	12	12	275.4		33.05					
5	3	3	14	484.4			14.53				
6	2	2	14	396.2			7.92				
7	1	1	14	446.4			4.46]	
8	5	5	14	484.4			24.22]	
9	6	6	14	377.6			22.65			1	
10	6	6	14	427.2			25.63			1	
11	4	4	12	373.6		14.95				1	
12	6	6	12	376.0		22.56]	
14	8	8	12	366.0		29.28				1	
15	4	4	12	366.0		14.64				1	
Datum:				lfdm		226.64	99.42			1	
				kg/lfdm	0.62	0.89	1.21	1.58	2.47	1	
zu Plan Nr.:				kg		201.22	120.14			1	
				Gesamtgewicht:					321.36	+38.42 (L	agermatten) = 359.78 kg
]

Bild 4.14: Maske 2.7 Stahlliste

In dieser Ausgabemaske können keine Änderungen vorgenommen werden.

Die Stahlliste bietet Informationen zu den Bewehrungsmatten sowie detaillierte Angaben zu den zugelegten Bewehrungsstäben und zur Köcherbewehrung einer jeden Position:

- Anzahl der Bewehrungsstäbe pro Fundament
- Gesamtzahl der Bewehrungsstäbe aller Fundamente
- Schnittlänge eines Bügels
- Gesamtlänge aller Bügel

Zusätzlich wird die *Gesamtlänge* aller Bewehrungsstäbe gleichen Durchmessers und das *Gesamt-gewicht* der Bewehrungsstäbe und -matten ausgegeben.

2

4.8 Betonkubatur

8 Betonkubatur		
Fundament Nr 1		Betongüte: Beton C35(45
An Knoten : 1		botoligate. Botoli o conto
Anzahl der Fundamente : 1		
Bezeichnung : Fundament aus Handbuchbeispiel		
	Volumen pro Fundament	Volumen aller Fundamente
	[m ³]	[m ³]
Fundamentplatte	3.09	3.09
Köcher	1.53	1.53
Füllbeton	0.17	0.17

2

Bild 4.15: Maske 2.8 Betonkubatur

Diese Ausgabemaske gibt Aufschluss darüber, wie viele Kubikmeter Beton für die *Fundamentplatte*, den *Köcher* und den *Füllbeton* zwischen Köcher und Stütze eines bzw. aller Fundamente benötigt werden.

5 Ergebnisauswertung

Nach der Bemessung stehen verschiedene Möglichkeiten zur Verfügung, die Ergebnisse auszuwerten und für die Dokumentation aufzubereiten.

5.1 Grafik der Fundaments in Ergebnismaske

In den meisten Ergebnismasken werden dynamische Grafiken des Fundaments oder der Bewehrung angezeigt. Sie erleichtern die Übersicht und veranschaulichen die Parameter.

Bild 5.1: Interaktive Grafik in Maske 2.2 für Biegebruchsicherheit

Die Schaltflächen unterhalb der Grafik sind mit folgenden Funktionen belegt:

Schaltfläche	Bezeichnung	Funktion
×	Bemaßung	Blendet die Maßlinien ein und aus
	Isometrie	Stellt die isometrische Ansicht dar
đ	Perspektive	Schaltet die perspektivische Darstellung ein und aus
X	Zoom aufheben	Stellt die Gesamtansicht des Fundaments wieder her
I X	Ansicht X	Zeigt die Ansicht in Richtung der X-Achse
₿ -Y	Ansicht -Y	Zeigt die Ansicht entgegen der Y-Achse
ĨŽ	Ansicht Z	Zeigt die Ansicht in Richtung der Z-Achse
x_xx	Werte	Blendet Last- oder Ergebniswerte ein und aus
	Drucken	Ermöglicht das Drucken der aktuellen Fundamentgrafik

Tabelle 5.1: Grafik-Schaltflächen in den Ergebnismasken

Mit der Maus kann die Ansicht gezoomt, verschoben oder gedreht werden. Diese Funktionen sind im Kapitel 3.4.9 des RFEM- bzw. RSTAB-Handbuchs beschrieben (siehe auch folgendes Kapitel 5.2).

5.2 3D-Rendering

3D-Rendering

In allen Ergebnismasken steht die Schaltfläche [3D-Rendering] zur Verfügung. Sie bietet die Möglichkeit, eine fotorealistische Darstellung des Fundaments aufzurufen.

Bild 5.2: Grafik-Fenster mit 3D-Rendering einer Köcherfundamentbewehrung

Menüleiste

Das Pulldownmenü Datei enthält Funktionen zum Drucken der Grafik (siehe Kapitel 6.2).

Die Funktionen im Menü Extras ermöglichen es, die Darstellung anzupassen:

Greifen (Verschieben, Rotieren, Zoomen)

Das Symbol des Mauszeigers ändert sich in eine Hand. Damit kann die Darstellung des Fundaments verschoben, rotiert oder gezoomt werden.

Zum *Verschieben* klickt man mit dem Handsymbol in den Grafikbereich, hält die Maustaste gedrückt und schiebt den Mauszeiger in die gewünschte Richtung.

Zum *Rotieren* muss mit gedrückter [Strg]-Taste in den Grafikbereich geklickt und der Mauszeiger in die gewünschte Drehrichtung bewegt werden.

Das *Zoomen* ist möglich, indem die Maus bei gedrückter [Umschalt]-Taste nach oben oder unten bewegt wird.

Die Ansicht kann auch direkt mit der Maus angepasst werden (siehe Kapitel 3.4.9 des RFEM- bzw. RSTAB-Handbuchs).

Zoomen

Das Symbol des Mauszeigers ändert sich in eine Lupe. Wird nun ein Fenster über einen Bereich aufgezogen, wird dieser Ausschnitt vergrößert dargestellt.

Darzustellende Bewehrung

Dieser Menüeintrag öffnet den Dialog Darzustellende Bewehrung.

arzustellende Bewehrung	×
Bewehrung kategorisieren nach Bewehrungsort Kräite-Beanspruchung Plattenbewehrung	Köcherbewehrung
 Grundmatte Unten Oben Zugelegte Bewehrungsstäbe Unten Hauptbewehrungsrichtung Mittlerer Bewehrungsbereich Äußerer Bewehrungsbereich Mittlerer Bewehrungsbereich Äußerer Bewehrungsbereich Äußerer Bewehrungsbereich Äußerer Bewehrungsbereich Äußerer Bewehrungsbereich Außerer Bewehrungsbereich Mittlerer Bewehrungsbereich Mußerer Bewehrungsbereich Mebenbewehrungstichtung Hauptbewehrungstichtung Nebenbewehrungstichtung Nebenbewehrungstichtung 	 ✓ Obere horizontale Bügel ✓ Bu ✓ Buy ✓ Bux ✓ Untere horizontale Bügel ✓ Bu ✓ Bu ✓ Buy ✓ Bux ✓ Vertikale Bügel ✓ Vx ✓ Vy ✓ Köcherwandbewehrung ✓ Vx,Wand ✓ Vy,Wand
0	Köcherbewehrung infolge Beanspruchung aus M-y, P-x M-x, P-y Köcherwandbewehrung

Bild 5.3: Dialog Darzustellende Bewehrung

Die Kontrollfelder steuern, welche Bewehrungsarten im 3D-Rendering des Fundaments dargestellt werden. Je nach Fundamenttyp sind nur bestimmte Einträge auswählbar.

Wenn im Abschnitt *Bewehrung kategorisieren nach* von der Option *Bewehrungsort* auf *Kräfte-Beanspruchung* umgestellt wird, wird der Dialogabschnitt rechts unten zugänglich. Dort kann dann die Bewehrung für die Anzeige ausgewählt werden, die aus bestimmten Belastungen resultiert.

Hintergrund weiß

Mit diesem Menüeintrag kann der schwarz voreingestellte Grafikhintergrund in einen weißen Hintergrund geändert werden. Die Vorgabe bleibt für den aktuellen Bemessungsfall erhalten.

Ein weißer Hintergrund lässt sich dauerhaft über den Konfigurationsmanager von RFEM bzw. RSTAB einstellen (siehe Kapitel 3.4.10 des RFEM- bzw. RSTAB-Handbuchs).

Symbolleiste

Die Symbolleiste bietet verschiedene Möglichkeiten zum Drucken und Anpassen der Darstellung.

😼 | 🐮 🔍 🍳 💕 | 🕅 🏞 搅 🔟 🗗 | 🚣 🚢 🛱 🛄 -

Bild 5.4: Symbolleisten-Schaltflächen

Neben den in Tabelle 5.1 beschriebenen Schaltflächen sind folgende Funktionen verfügbar:

Schaltfläche	Bezeichnung	Funktion
	Vorherige Ansicht	Stellt die zuletzt gewählte Ansicht dar
1-	Achsen	Blendet die Achsensymbole ein und aus
_	Stütze	Blendet den anschließenden Stab ein und aus
*x	Bemaßung	Blendet die Maßlinien ein und aus
I]	Lasten	Blendet die Lasten ein und aus

Tabelle 5.2: Schaltflächen im Grafik-Fenster

Damit kann nicht nur die Bewehrung, sondern beispielsweise auch die aufgebrachte Belastung überprüft werden.

5.3 Bewehrungspläne

Pläne

In allen Ergebnismasken steht die Schaltfläche [Pläne] zur Verfügung. Sie bietet die Möglichkeit, einen Bewehrungsplan für das Fundament aufzurufen.

Bild 5.6: Bewehrungsplan eines Köcherfundaments

Menüleiste

Das Pulldownmenü Datei enthält Funktionen zum Drucken der Grafik (siehe Kapitel 6.2).

Mit der Zoom-Funktion im Menü *Extras* lässt sich die Darstellung vergrößern (siehe Beschreibung im vorherigen Kapitel 5.2).

Die Funktionen im Menü **Abmessung** ermöglichen es, die Vermaßung der Auszugsstäbe (z. B. im Bild oben links Position 15) für die Fertigung zu steuern:

- Tangential: Längen bezogen auf Außenkanten der Bewehrung
- Axial: Längen bezogen auf Schwerpunkt der Bewehrung (Mittellinien)
- Biegerollenzentrum: Längen bezogen auf Mittelpunkt der Biegerolle

Symbolleiste

Die Symbolleiste bietet verschiedene Möglichkeiten zum Drucken und Ändern des Schnitts, der durch das Fundament geführt wird.

Je nach Fundamenttyp stehen bis zu sieben verschiedene Schnitte zur Auswahl:

Schaltfläche	Bezeichnung	Funktion
	Schnitt A-A	Draufsicht untere Plattenbewehrung
	Schnitt B-B	Draufsicht obere Plattenbewehrung
	Schnitt C-C	Draufsicht Köcher
O	Schnitt D-D	Schnitt durch Köchermitte, Blickrichtung in X
C	Schnitt E-E	Schnitt durch Köcherwand, Blickrichtung in X
B	Schnitt F-F	Schnitt durch Köchermitte, Blickrichtung in Y
	Schnitt G-G	Schnitt durch Köcherwand, Blickrichtung in Y

Tabelle 5.3: Schaltflächen im Bewehrungsplan

Ist beispielsweise bei einem Plattenfundament keine Bewehrung für die obere Lage erforderlich, so ist die Schaltfläche für den Schnitt *B-B* deaktiviert.

5.4 Ergebnisse am RFEM/RSTAB-Modell

Die Grafik des Fundaments kann auch grafisch am RFEM- bzw. RSTAB-Modell dargestellt werden: Klicken Sie die Schaltfläche [OK] an, um das Modul RF-/FUND Pro zu verlassen. Stellen Sie dann in der RFEM-/RSTAB-Menüleiste den RF-/FUND Pro-Bemessungsfall ein.

Im Arbeitsfenster von RFEM bzw. RSTAB wird nun das Fundament im 3D-Rendering visualisiert. Sollte dies nicht der Fall sein, so sind die Ergebnisse über die Schaltfläche [Ergebnisse ein/aus] zu einzuschalten.

Bild 5.8: Darstellung eines Köcherfundaments in RFEM-Arbeitsfenster (Darstellungsart: gefüllt transparent)

Wenn die *Darstellungsart gefüllt transparent* eingestellt ist, präsentiert sich das Fundament wie in Bild 5.8 dargestellt. Verdeckte Kanten und Flächen sind sichtbar.

•

Mit der *Darstellungsart gefüllt* wird das Fundament – wie das gesamte Modell – mit gefüllten Flächen visualisiert. Bei der *Darstellungsart Drahtmodell* werden symbolhaft nur die Nummer des Fundaments, der Fundamenttyp und die Abmessungen der Fundamentplatte angezeigt.

5

Bild 5.9: Darstellung eines Köcherfundaments im Drahtmodell

6 Ausdruck

6.1 Ausdruckprotokoll

Für die Daten des Moduls RF-/FUND Pro wird – wie in RFEM oder RSTAB – ein Ausdruckprotokoll erzeugt, das mit Grafiken und Erläuterungen ergänzt werden kann. Die Selektion im Ausdruckprotokoll steuert, welche Daten des Bemessungsmoduls schließlich im Ausdruckprotokoll erscheinen.

6

Große Systemen lassen sich übersichtlich dokumentieren, wenn die Daten in mehrere Ausdruckprotokolle aufgeteilt werden. So kann z. B. die Ausgabe des Moduls RF/-FUND Pro in ein eigenes Ausdruckprotokoll gedruckt werden.

Das Ausdruckprotokoll ist im RFEM- und RSTAB-Handbuch beschrieben. Das Kapitel 10.1.3.5 *Selektion der Zusatzmodul-Daten* erläutert, wie die Ein- und Ausgabedaten von Zusatzmodulen für den Ausdruck aufbereitet werden können. Für RF-/FUND Pro bestehen vielfältige Selektionsmöglichkeiten. So kann u. a. festgelegt werden, in welcher Form die Nachweise dokumentiert werden (*Kurzfassung*, *Langfassung*) und welche Bewehrungspläne im Protokoll enthalten sind.

Bild 6.1: Selektion der RF-FUND Pro-Daten im Ausdruckprotokoll

Bild 6.2: RF-FUND Pro-Ausdruckprotokoll mit Bewehrungsplänen und Nachweisen

6.2 Grafikausdruck

Es können sowohl Fundament- oder Bewehrungsdarstellungen des Moduls RF-/FUND Pro (siehe Bild 5.2, Seite 64) als auch Grafiken des RFEM/RSTAB-Arbeitsfensters (siehe Bild 5.8, Seite 68) für den Ausdruck aufbereitet werden. Damit lassen sich die Bewehrungen und die am RFEM- bzw. RSTAB-Modell gezeigten Fundamentkörper dokumentieren.

Die Druckfunktion ist über die Schaltfläche [Drucken] zugänglich. Sie öffnet folgenden Dialog.

Basis Optionen		
Grafikbild Sofort ausdrucken In Ausdruckprotokoll: In Zwischenablage ablegen In 3D-PDF	Welche Fenster Image: Welche	Grafikgröße ○ Wie Bildschirm-Ansicht ④ Fensterfüllend ○ Im Maßstab 1: 20 ▼
Grafikbild-Größe und -Drehung ✓ Über gesamte Seitenbreite Ober gesamte Seitenhöhe ● Höhe: 53 ▲ [% der Seite]	Optionen Im Ergebnisverlauf Werte x-Stelle ausgeben Grafikbild sperren (ohne A	an gewünschter ktualisierung)
Drehung: 0 (*)	in unan explotered in the line of the line	ny unougon
Grafik-Überschrift Grafik des Fundamentes		OK Abbrechen

Bild 6.3: Dialog Grafikausdruck

Der Dialog Grafikausdruck ist im Kapitel 10.2 des RFEM- bzw. RSTAB-Handbuchs beschrieben.
7 Allgemeine Funktionen

Dieses Kapitel beschreibt nützliche Menüfunktionen und stellt Exportmöglichkeiten für die Ergebnisse von RF-/FUND Pro vor.

7.1 Bemessungsfälle

Bemessungsfälle ermöglichen es, Fundamente für die Nachweise zu gruppieren oder in verschiedenen Bemessungsvarianten (z. B. unterschiedliche Abmessungen oder Materialien) zu behandeln.

Bei der Verwendung von Bemessungsfällen besteht die Möglichkeit, eine Knotennummer mehrfach zu untersuchen. In ein und demselben Bemessungsfall hingegen kann ein Knoten nur einmal ausgewählt werden (siehe auch Kapitel 2.1, Seite 7).

Neuen Bemessungsfall anlegen

Ein Bemessungsfall wird angelegt über das RF-/FUND Pro-Menü

Datei ightarrow Neuer Fall.

Es erscheint folgender Dialog.

Neuer RF-	FUND Pro-Fall
Nr. 1	Bezeichnung Bemessung von Fundamenten
٢	OK Abbrechen

Bild 7.1: Dialog Neuer RF-FUND Pro-Fall

In diesem Dialog ist eine (noch freie) *Nummer* für den neuen Bemessungsfall anzugeben. Die Bezeichnung erleichtert die Auswahl in der Lastfall-Liste.

Nach [OK] erscheint die RF-/FUND Pro-Maske 1.1 Basisangaben zur Eingabe der Bemessungsdaten.

Bemessungsfall umbenennen

Die Bezeichnung eines Bemessungsfalls wird geändert über das RF-/FUND Pro-Menü

$Datei \rightarrow Fall umbenennen.$

Es erscheint folgender Dialog.

RF-FUND P	ro-Fall umbenennen	×
Nr.	Bezeichnung Köcherfundament	•
٦		OK Abbrechen

Bild 7.2: Dialog RF-FUND Pro-Fall umbenennen

Hier kann nicht nur eine andere *Bezeichnung*, sondern auch eine andere *Nummer* für den Bemessungsfall festgelegt werden.

Bemessungsfall kopieren

Die Eingabedaten des aktuellen Bemessungsfalls werden kopiert über das RF-/FUND Pro-Menü

 $\textbf{Datei} \rightarrow \textbf{Fall kopieren}.$

Es erscheint folgender Dialog.

Kopieren v	on Fall	
FA1 - Köc	herfundament	•
Neuer Fall		
Nr.:	Bezeichnung:	
2		

Bild 7.3: Dialog RF-FUND Pro-Fall kopieren

Es ist die Nummer und ggf. die Bezeichnung für den neuen Fall anzugeben.

Bemessungsfall löschen

Bemessungsfälle lassen sich wieder löschen über das RF-/FUND Pro-Menü

```
Datei \rightarrow Fall \, löschen.
```

Es erscheint folgender Dialog.

Fa	Fall löschen								
	Vorhandene Fälle								
	Nr.	Bezeichnung 📥							
	1	Köcherfundament							
	2	Blockfundament							
	٢	OK Abbrechen							

Bild 7.4: Dialog Fall löschen

Der Bemessungsfall kann in der Liste *Vorhandene Fälle* ausgewählt werden. Mit [OK] erfolgt der Löschvorgang.

7.2 Einheiten und Dezimalstellen

Die Einheiten und Nachkommastellen werden für RFEM bzw. RSTAB und für die Zusatzmodule gemeinsam verwaltet. In RF-/FUND Pro ist der Dialog zum Anpassen der Einheiten zugänglich über das Menü

Einstellungen \rightarrow Einheiten und Dezimalstellen.

Es erscheint der aus RFEM bzw. RSTAB bekannte Dialog *Einheiten und Dezimalstellen*. In der Liste *Programm/Modul* ist RF-/FUND Pro voreingestellt.

heiten und Dezimalstellen						
Ogramm / Modul	RF-FUND Pro					
RE-BETON Stabe	Eingabedaten			Ergebnisse		
RE-BETON Stützen		Finhait	Dez -Stellen		Finhait	Dez -Stellen
RF-STANZ		Linner	DezStelleri			DezSteller
RF-HOLZ Pro	Langen:	m 👻	3 📼	Spannungen:	N/mm ² -	3 🖵
	Querschnittmaße:	cm 👻	2 🌲	Längen:	m 👻	3 🌲
	Powebs upgeflächen:	~~~ -	2	Bishoo:	~~~ =	2
RF-HOLZ	bewenrungsnachen.	ciii 2 🔻	2	Hachen.	UII 2 +	2 💌
RF-DYNAM	Kräfte:	kN 👻	2 ≑	Bewehrungsflächen:	cm^2 ▼	3 ≑
RF-JOINTS	Flächenlasten:	kN/m^2 -	2 🚔	Bewehrungsflächen:	cm^2/m -	2 🚔
RF-STIRNPL			-			
RF-VERBIND	Linienlasten:	kN/m ▼	2 🚍	Bewehrungsdurchmesser:	mm 👻	
RF-RAHMECK Pro	Spezifische Gewichte:	kN/m^3 ▾	2 🌲	Bewehrungsabstände:	cm 👻	1 🚔
	Concernation	MN1/m^2	2	Maaaaa am Länga:	ka/m -	1
RE-HOHI PROF	opannungen.	MIN/III Z 👻	3 💌	Masseri pro Lange.	kg/m ♥	
- RF-FUND	Dimensionslose:	- +	3 ≑	Massen:	kg 🔻	1 🚖
RF-FUND Pro	Winkel	• •	2 📥	Gesamtmassen:	t -	2 🛋
RF-STABIL			-	coolina noticon.		
RF-DEFORM				Kräfte:	kN 👻	2 🚔
···· RF-BEWEG				Momente:	kNm 👻	2 🌲
···· RF-IMP				Dimensional	MNI-	
RF-SOILIN				Dimensionslose:		3 🖵
RF-GLAS				Bewehrungsgrade:	% 🗸	2 🌲
RF-LAMINATE						
RF-MAST Struktur						
DE MAST Poloetung						
BE-MAST Knicklängen						
in a whore renorder gen						

Bild 7.5: Dialog Einheiten und Dezimalstellen

Die Einstellungen können als Benutzerprofil gespeichert und in anderen Modellen wieder verwendet werden. Diese Funktionen sind im Kapitel 11.1.3 des RFEM- oder RSTAB-Handbuchs beschrieben.

7.3 Nationale Anhänge

۱ (۲

Auswahl des Nationalen Anhangs

Wie bereits im Kapitel 2.1 auf Seite 7 beschrieben, stehen im Modul RF-/FUND Pro verschiedene Nationale Anhänge für die Bemessung zur Auswahl.

Die Liste der aktuell in RF-/FUND Pro implementierten Nationalen Anhänge kann auf der Produktseite im Internet nachgelesen werden.

7.4 Bemessungsverfahren

Für die Nationalen Anhänge für Deutschland und Österreich steht alternativ zum *Verfahren 2* das *Verfahren 2** zur Auswahl, mit dem der Grundbruchwiderstand ermittelt werden kann.

Auswahl des Nachweisverfahrens

Das Nachweisverfahren kann bei den Parametern des Nationalen Anhangs festgelegt werden.

Parameter des Nationalen Anhangs - DIN EN 1992-1-1/NA:2013-04 + DIN EN 1997-1/NA:2010-12								
Norm:	Stahlbeton (EN 1992-1-1) Bemessung in der Geotechnik (EN 1997-1)							
Ursprünglicher Anhang:								
DIN	 2.4.2.4 Teilsicherheitsbeiwerte f ür Eigenschaften von Baustoffen Teilsicherheitsbeiwert f ür Beton im Grenzzustand der Tragf ähigkeit (st ändige, vor	γc	1.500					
Bezeichnung:	Teilsicherheitsbeiwert für Stahl im Grenzzustand der Tragfähigkeit (ständige, vorübergehend Teilsicherheitsbeiwert für Beton im Grenzzustand der Tragfähigkeit (Außergewöhnlich)							
	Teilsicherheitsbeiwert für Betonstahl im Grenzzustand der Tragfähigkeit (Außergewöhnlich)	γs	1.000					
Nachweisverfahren:	Backone S. B							
Verfahren 2 Verfahren 2 Verfahren 2 Algemeine Bewehrungsregeln								
Verfahren 2*								

Bild 7.6: Auswahl des Nachweisverfahrens im Dialog Parameter des Nationalen Anhangs

Beim Anlegen eines neuen Bemessungsfalls ist das Verfahren 2 voreingestellt.

Auf die Unterschiede zwischen den beiden Nachweisverfahren wird detailliert in [3] eingegangen. Sie lassen sich zusammengefasst wie folgt beschreiben:

Verfahren 2

Der Grundbruchwiderstand R_k wird mit den charakteristischen Werten der Scherfestigkeit und den Bemessungswerten der Einwirkung ermittelt. Daraus wird mit dem Teilsicherheitsbeiwert $\gamma_{\rm R} = 1,40$ der Bemessungswert des Grundbruchwiderstandes R_d berechnet, welcher mit dem Bemessungswert der vertikalen Einwirkung V_d zu vergleichen ist.

Verfahren 2*

Das Verfahren 2* entspricht dem o. g. Nachweisverfahren 2 mit dem Unterschied, dass der Grundbruchwiderstand R_k mit den charakteristischen Werten der Einwirkung ermittelt wird. Dies wirkt sich günstig auf die in die Grundbruchgleichung eingehende Exzentrizität und Lastneigung aus.

Die Unterschiede zwischen den beiden Nachweisverfahren sind auch im Kapitel 8.4 auf Seite 123 in Tabellenform dokumentiert.

Nationaler Anhang in RFEM/RSTAB und RF-/FUND Pro

Es ist möglich, in RF-/FUND Pro einen anderen Nationalen Anhang auszuwählen als im Hauptprogramm RFEM bzw. RSTAB, der dort für die Bildung von Last- und Ergebniskombinationen verwendet wird. Norm und Nationaler Anhang sind für die Teilsicherheits- und Kombinationsbeiwerte der Überlagerung erforderlich (siehe RFEM- oder RSTAB-Handbuch, Kapitel 12.2.1 zum Anlegen eines Modells und zur Klassifizierung der Lastfälle und Kombinationen).

Bei unterschiedlichen Nationalen Anhängen ist sicherzustellen, dass die bemessungsrelevanten Last- und Ergebniskombinationen mit den korrekten Beiwerten erzeugt wurden.

Berücksichtigung der Schadensfolgeklasse

Bei der automatischen Erzeugung der Last- oder Ergebniskombinationen kann die Schadensfolgeklasse entsprechend [6], Anhang B3 festgelegt werden. Die Auswahl der Schadensfolgeklasse und damit des Faktors K_{FI} hat auch einen Einfluss auf die Ergebnisse in RF-/FUND Pro.

Beiwerte - EN 1990	CEN	23
Teilsicherheitsbeiw	rerte Kombinationsbeiwerte Schadensfolgeklasse	
Schadensfolgekla	isse wählen	
🔘 SFK 3	Hohe Folgen für Menschenleben oder sehr große wirtschaftliche, soziale oder umweltbeeinträchtigende Folgen Beispiele: Tribünen, öffentliche Gebäude mit hohen Versagensfolgen (z. B. eine Konzerthalle)	
SFK 2	Mittlere Folgen für Menschenleben, beinträchtliche wirtschaftliche, soziale oder umweltbeträchtigende Folgen Beispiele: Wohn- und Bürogebäude, öffentliche Gebäude mit mittleren Versagensfolgen (z. B. ein Bürogebäude)	
SFK 1	Niedrige Folgen für Menschenleben und kleine oder vernachlässigbare wirtschaftliche, soziale oder umweltbeeinträchtigende Folgen Beispiele: Landwirtschaftliche Gebäude ohne regelmäßigen Personenverkehr (z. B. Scheunen, Gewächshäuser)	
Benutzer- definiert	Faktor K FI : 1.00	
۵ 🔁 📼	К С	Abbrechen

Bild 7.7: RFEM- bzw. RSTAB-Dialog Beiwerte zur Auswahl der Schadensfolgeklasse SFK

Die hier festgelegte Schadensfolgeklasse wird auch im Modul RF-/FUND Pro berücksichtigt.

Der Faktor K_{FI} beeinflusst die im Modul angesetzten Bemessungslasten:

- Last aus Fundamentplatteneigengewicht
- Last aus Köchereigengewicht
- Last aus Überschüttung
- Last aus zusätzlicher Auflast

Der Faktor für Einwirkung zur Differenzierung der Zuverlässigkeit K_{FI} und die Schadensfolgeklasse SFK werden in den RF-/FUND Pro-Ergebnistabellen dokumentiert. Sie können unter dem Eintrag Resultierender Teilsicherheitsbeiwert eingesehen werden (siehe Bild 7.8).

Grundbruch (EC 7, 6.5.2) | Knoten 3 | LK12

Bemessungswert aus Auflagerkräfte und -momente								
Bemessungswert der Grundbrucheinwirkung	V'd/A'	173.9	kN/m ²					
Bemessungswert der wirksamen Vertikallast in der Bodenfuge	V'd	412.25	kN					
—	G _{p,d}	34.26	kN					
⊕ Bemessungswert aus Köchereigengewicht	G cal,d	47.95	kN					
Bemessungswert aus Überschüttung	G _{cov,d}	85.61	kN					
- Resultierender Teilsicherheitsbeiwerte für ständige, ungünstige Einwirkunger	γG,sup	1.485						
- □ Schadensfolgeklasse	SFK	3						
Faktor für Einwirkungen zur Differenzierung der Zuverlässigkeit	KFI	1.100						
Teilsicherheitsbeiwerte für ständige, ungünstige Einwirkungen	γG,sup	1.350						
Charakteristischer Wert aus Überschüttung	G _{cov,k}	57.65	kN					
 Höhe der Überschüttung 	ü	1.000	m					
Charakteristische Wert der Wichte der Überschüttung	γü,k	20.00	kN/m ³					
⊞ Bemessungswert aus Auflast	P S,d	71.13	kN					
aus der Stützennomalkraft	Pz,d	173.30	kN					
- 🕀 Bemessungswerte der wirksamen Momente in der Bodenfuge								
- Bemessungswert der Lastausmitte der wirksamen Vertikallast								
Rechnerische Sohlfläche	A'	23713	cm ²					

Bild 7.8: Ausgabe der Schadensfolgeklasse in RF-/FUND Pro

Wird in RF-/FUND Pro ein Nationaler Anhang ausgewählt, der zu einem anderen Faktor K_{FI} als in RFEM bzw. RSTAB vorgegeben führt, erhält der Anwender einen Hinweis vor dem Start der Berechnung.

RFEM64 Hinweis Nr. 1449							
Der in RFEM eingestellte Nationale Anhang für die Lastkombinatorik entspricht nicht dem zur Bemessung ausgewählten Nationalen Anhang. Für die Emittlung der modulintemen Bemessungslasten wird der in der Lastkombinatorik in RFEM verwendete Faktor K-FI in das Modul übemommen. Der angesetzte Wert für den Faktor K-FI ist 0.91.							
<u>OK</u> <u>Abbrechen</u>							

Bild 7.9: Hinweis vor der Berechnung

Beispiel:

Norm in RFEM/RSTAB:	EN 1990 + NA für Schweden	\Rightarrow K _{FI} = 0,91
Norm in RF-/FUND Pro:	EN 1992-1-1 + EN 1997-1	$\Rightarrow K_{FI} = 1,00$

Für die Nachweise in RF-/FUND Pro wird der Faktor $K_{FI} = 0.91$ aus RFEM bzw. RSTAB verwendet.

7.5 Export der Ergebnisse

Die Ergebnisse der Fundamentbemessung lassen sich auch in anderen Programmen nutzen.

Zwischenablage

Markierte Zellen der RF-/FUND Pro-Ergebnismasken können mit [Strg]+[C] in die Zwischenablage kopiert und mit [Strg]+[V] z. B. in ein Textverarbeitungsprogramm eingefügt werden. Die Überschriften der Tabellenspalten werden dabei nicht berücksichtigt.

Ausdruckprotokoll

Die RF-/FUND Pro-Daten können in das Ausdruckprotokoll gedruckt (siehe Kapitel 6.1, Seite 70) und von dort dann exportiert werden über das Menü

$\textbf{Datei} \rightarrow \textbf{Export in RTF}.$

Ebenso ist der Export in VCmaster möglich. Diese Funktionen sind in Kapitel 10.1.11 des RFEModer RSTAB-Handbuchs beschrieben.

Excel / OpenOffice

RF-/FUND Pro ermöglicht den direkten Datenexport zu MS Excel und OpenOffice Calc oder in das CSV-Format. Diese Funktion wird aufgerufen über das Menü

```
\textbf{Datei} \rightarrow \textbf{Tabellen exportieren}.
```

Es öffnet sich folgender Exportdialog.

Export - MS Excel	×				
Einstellungen Tabelle	Applikation				
Mit Tabellenkopf	Microsoft Excel				
Nur markierte Zeilen	OpenOffice.org Calc				
	CSV file format				
Einstellungen					
Tabelle in die aktive Arbeitsmappe exportieren Tabelle in die aktive Tabelle exportieren Existierende Tabelle überschreiben					
Selektierte Tabellen					
 Aktuelle Tabelle Alle Tabellen 	 Ausgeblendete Spalten exportieren Export-Tabellen mit Details 				
2	OK Abbrechen				

Bild 7.10: Dialog Export - MS Excel

Wenn die Auswahl feststeht, kann der Export mit [OK] gestartet werden. Excel bzw. OpenOffice werden automatisch aufgerufen, d. h. die Programme brauchen nicht zuvor geöffnet werden.

🛛 🛛	19 - (°1 -	-		Mapp	e1 - Microso	oft Excel				x
Datei	Start	Einfügen Se	eitenlayou	ut Formeln D	aten Üb	erprüfen A	nsicht Add	-Ins Acrobat	ا 🖸 ۵	er 23
Einfü	gen 🛷	Calibri • : F K U • . •	11 • A A A	≡ = = = = ≡ ≡ ≡ ⊡ × ‡ ≇ ≫ × Ausrichtung ਯ	Text	Formatvork	agen Einfü * Lösch Einfü Zelle	gen ▼ ∑ ▼ len ▼	ortieren Sucher d Filtern - Auswäl Bearbeiten	n und hlen ▼
	A2	- (0	f _*	Nachweisart						~
		А			В	С	D		E	
1					Maßg	ebender	Nachweis-			
2		Nachwe	isart		Knoten	LF	Kriterium	Kommentar	zur Nachweisa	rt
3 La	gesicherhe	it (EC 7, 2.4.7.2)			1	LF2	0,478			
4 Au	ıfschwimm	en (EC 7, 2.4.7.4)			1	LF1	0,000			
5 Gr	undbruch (EC 7, 6.5.2)			1	LF3	0,428			
6 Sta	ark exzentr	ische Belastunge	en (EC 7,	6.5.4)	1	LF5	0,448			
7 Gl	eiten (EC 7,	, 6.5.3)			1	LF1	0,244			
8 Bi	egebruchsi	cherheit Platte (EC 2, 6.1	.)	1	LF1	0,883			
9 Du	ırchstanzer	n (EC 2, 6.4)			1	LF3	0,921			
10 Mi	indesteinb	indetiefe der Stü	itze		1	LF1	0,611			
11 Bi	egebruchsi	cherheit Köcherv	wand		1	LF2	0,789			
12 Be	tonspannu	ngen in den Köc	herwän	den (EC 2, 10.9.6)	1	LF2	0,069			
13 Üb	pergreifung	slänge der Köch	erbewe	hrung (EC 2, 8.7.3)	1	LF2	0,643			
14										
15										
16										-
14 4 Þ	▶ 2.2 M	aßgebende Nach	weiskrit	erie / 2.3 Erforder	liche Bewehr	ung / 🛛 🖣				
Bereit								100 % 😑		÷+) ,;;

Bild 7.11: Export-Ergebnis in Excel

CAD-Anwendungen

Die in RF-/FUND Pro generierten Bewehrungspläne lassen sich auch in CAD-Anwendungen nutzen. Die Pläne können als DXF-Datei exportiert werden über das Menü

 $Datei \rightarrow DXF$ -Export der Bewehrungszeichnungen.

Im Windows-Dialog Speichern sind das Verzeichnis und der Name der DXF-Datei anzugeben.

Anschließend können im Dialog *DXF-Export der Bewehrungszeichnungen* der Inhalt des Exports, die Bemaßung und die Layer eingestellt werden.

DXF-Export der Bewehrungszeichnur	igen	×
Zu erzeugende Zeichnungen Bema	Bung Layers	
\overrightarrow{V} Draufsicht A - A Untere Plattenbewehrung	Schnitt D - D Senkrecht zur Köcherwand in x	Schnitt G - G Parallel zur Köcherwand in x
Traufsicht B - B Obere Plattenbewehrung	V Schnitt E - E Parallel zur Köcherwand in y	
✓ Draufsicht C - C Köcherbewehrung	Schnitt F - F Senkrecht zur Köcherwand in y	Stückliste
		OK Abbrechen

Bild 7.12: Dialog DXF-Export der Bewehrungszeichnungen

8 Beispiele

8.1 Köcherfundament

In diesem Beispiel wird ein bewehrter Köcher mit rauer Schalungsfläche für eine Gruppe von Lastfällen ausgelegt, deren Schnittgrößen zu einer zweiachsigen Biegebeanspruchung führen. Für die Bewehrung werden umschließende Bügel gewählt.

8.1.1 Lagerkräfte

In RFEM bzw. RSTAB werden die Lagerreaktionen für die definierten Belastungen ermittelt. Für die Bemessung eines Köcherfundaments mit rauer Schalung sind folgende Lastfälle maßgebend:

Lastfall maxHoX	Die Schnittgrößen dieses Lastfalls liefern die größte horizontale Kraft in X-Richtung.
Lastfall maxHoY	Die Schnittgrößen dieses Lastfalls liefern die größte horizontale Kraft in Y-Richtung.
Lastfall minT	Aus den Schnittgrößen dieses Lastfalls ergibt sich die größte Mindest- einbindetiefe der Stütze in den Köcher.

RF-/FUND Pro untersucht, welcher Lastfall oder welche Lastkombination die maßgebenden Lagerreaktionen für die Bemessung liefert.

Es liegen die Schnittgrößen folgender Lastfälle für die Nachweise der Tragfähigkeit und der Gebrauchstauglichkeit vor:

GZT:

Lastfall	P _{Z,d} [kN]	P _{X,d} [kN]	P _{Y,d} [kN]	M _{X,d} [kN]	M _{Y,d} [kN]
1	300	-50	20	100	250
2	100	0	0	0	327
3	500	0	0	150	-150

GZG:

Lastfall	P _{Z,k} [kN]	P _{X,k} [kN]	P _{Y,k} [kN]	M _{X,k} [kN]	M _{Y,k} [kN]
4	215	-35	14	75	175
5	75	0	0	0	235
6	360	0	0	110	-110

8 Beispiele

Zur Kontrolle der eingegebenen Lasten empfiehlt es sich, im Zeigen-Navigator von RFEM bzw. RSTAB die Vorzeichen der Lagerreaktionen zuzuschalten.

8

Bild 8.1: Aktivieren der Vorzeichen für Lagerreaktionen im Zeigen-Navigator von RFEM

8.1.2 Weitere Vorgaben

Für die Bemessung in RF-/FUND Pro gelten folgende Randbedingungen:

- Fundamenttyp Köcherfundament mit rauen Köcherinnenseiten
- Stütze Rechteck 30 cm / 40 cm
- Normen EN 1992-1-1, EN 1997-1
- Bemessungsschnitt Stützenmitte
- Bügel, die die Stütze umschließen - Bügelform C 35/45
- Beton
 - B 500 S (A)
- Betondeckung

- Betonstahl

Mindestbetondeckung nach Norm (Expositionsklasse XC2/XC3, Herstellungsart auf vorbereitetem Baugrund)

RF-FUND Pro - [8130]		Retondeckung nach Norm EN 1002-1-1
Datei Einstellungen Hil	fe	becondeexang norm environment 1992 1 1
FA1	✓ 1.3 Materialien	Cunten Coben Cseitlich/CKöcher
Fundament Nr. 1	Beton	Parameter zur Bestimmung der Betondeckung
Eingabedaten Resisengaben	Betongüte:	
Geometrie	Beton C35/45 🗸 🔊	Functional (11.2)
Material		Expussionskasse nach 4.4.1.2 (3)
Belastung	Betonstahlsorte:	Verschleißklasse nach 4.4.1.2 [13]
	B 500 S (A) ▼	Nutzungsdauer nach 4.4.1.2(5) Tabelle 4.3N 50 Jänien (1)
	Patradaaluusaan	Herstellungsart nach 4.4.1.3 [4]
	Detondeckungen	Luftporengehalt mehr als 4% Luftporen nach 4.4.1.2 (5) Note 2.
	nom ck: 70 [mm]	Besondere Qualitätskontrolle nachweisen nach 4.4.1.2(5) Tabelle 4.3N
	nom coben: 70 🌧 [mm]	Nenndurchmesser des Größtkorns größer als 32mm nach 4.4.1.2 (3) Tabelle 4.2
	nom cunten: 70 🚔 [mm] 🔶	Bewehrungs- Bewehrungs-
	nom c seitlich: 70 🚔 [mm]	Maximalar Rewehn mand unknown
	nom distribution	
	Mindesthetondeckung nach Norm	Mindestbetondeckung aus
		Verbundanforderungen nach 4.4.1.2 (3) cmin,b: 12 20 [mm]
	Verfügbare Betonstahllagermatten	Dauerhaftigkeitsanforderungen nach 4.4.1.2 (5) Cmin.dur: 20 20 [mm]
	Lieferprogramm:	Additives Sicherheitselement nach 4.4.1.2 (6) Δc dur, γ:
	Deutschland - 2008-01-(🔻	Verringerung der Mindestbetondeckung auf Grund
	Q-Matten R-Matten	Verwendung rostfreien Stahls nach 4.4.1.2 (7) Δc dur,st : 0 → 0 → [mm]
	🔽 Q 188 A 🔍 R 188 A	📄 zusätzlicher Schutzmaßnahmen nach 4.4.1.2 (8) Δc dur,add : 0 🐳 0 🐳 [mm]
	☑ Q 257 A ☑ R 257 A	Mindesthetondeckung pach 4 4 1 2 (2) Cmin (60 60 (sure)
	V Q 335 A V R 335 A	
	V Q 424 A V B 524 A	
	▼ Q 636 A	Nenndeckung der Bewehrung nach 4.4.1.1 cnom : 70 70 [mm]
		Mindestbetondeckung der Bewehrung
	Berechnung Details Nat A	
		OK Abbrechen
		(

Bild 8.2: Detaildialog für Betondeckung

- Überschüttung

- Exzentrizität in x-Richtung
- Exzentrizität in y-Richtung
 - 1,00 m mit Wichte der Überschüttung = 20 kN/m³

-30 cm (Abstand Stützenmitte zu Mitte Fundamentplatte)

- Zusätzliche Einzellast 17 kN
- Abstand vom Auflagerkoordinatensystem
 - in x-Richtung -0,5 m
 - in y-Richtung 0,5 m
- Zusätzliche Gleichstreckenlast 10 kN/m
- Abstand des Streckenlastbeginns vom Lagerkoordinatensystem

keine

in x-Richtung	1,5 m
in y-Richtung	1,5 m

- Abstand des Streckenlastendes vom Lagerkoordinatensystem

in x-Richtung	-2,0 m
in y-Richtung	-2,5 m

- Zulässige Bodenpressung $\sigma_{\rm Rk}$ 280 kN/m²
- Keine Berücksichtigung des passiven Erdwiderstands für Gleitsicherheitsnachweis
- Unkonsolidierte Verhältnisse

8.1.3 Abmessungen Fundamentplatte und Köcher

Die Auslegen-Parameter der Fundamentplatte sind wie folgt zu definieren:

Bild 8.3: Detaildialog für Auslegung der Fundamentplatte

Im Zuge der iterativen Berechnung werden folgende Abmessungen von Fundamentplatte und Köcher ermittelt:

8

Bezeichnung	Symbol	Wert	Einhei
∃ Stütze			
Abmessung in x-Richtung	Cx	0.400	m
Abmessung in y-Richtung	су	0.300	m
Exzentrizität			
Exzentrizität in x-Richtung	ex	-0.300	m
Exzentrizität in y-Richtung	ey	0.000	m
Fundamentplatte			
 Abmessung in x-Richtung 	x	3.300	m
Abmessung in y-Richtung	У	2.600	m
Plattendicke	d	0.360	m
🛛 Köcher			
Köcherhöhe	h	1.310	m
Einbindetiefe Stütze	t	1.310	m
Abmessung in x-Richtung			
Gesamte Köcherabmessung	dkx	1.140	m
Obere Köcherwandstärke	tox	0.270	m
Oberes Stützenspiel	a _{ox}	0.100	m
Untere Köcherwandstärke	tux	0.320	m
Unteres Stützenspiel	a _{ux}	0.050	m
Innenwandneigung	αx	87.81	•
Abmessung in y-Richtung			
Gesamte Köcherabmessung	dky	1.240	m
Obere Köcherwandstärke	toy	0.370	m
 Oberes Stützenspiel 	a _{oy}	0.100	m
Untere Köcherwandstärke	tuy	0.420	m
Unteres Stützenspiel	auy	0.050	m
Innenwandneigung	αγ	87.81	•
3 Überschüttung			
Höhe der Überschüttung	ü	1.000	m

Bild 8.4: Ergebnis des Auslegungsprozesses

Hinweis zu den ausgelegten Fundamentabmessungen

Es ist möglich, dass die vom Programm ausgelegten Abmessungen je nach RFEM/RSTAB-Version geringfügig differieren. Daher empfiehlt es sich, die ausgelegten Abmessungen für einen zweiten Rechengang zu übernehmen und auf ein "rundes Maß" aufzurunden. Diese Abmessungen werden in einem weiteren Rechenlauf nicht mehr geändert. Falls ein Nachweis nicht erfüllt ist, wird dies in den Ergebnismasken entsprechend gekennzeichnet.

Da die vom Benutzer erwarteten Fundamentabmessungen auf Zentimeter abgerundet sein sollen, können die berechneten Abmessungen in Maske 1.2 mit den unten dargestellten Schaltflächen übernommen und die gewünschten Abmessungen eingegeben werden.

Bild 8.5: Schaltflächen [Abmessungen übernehmen]

Stütze Abmessung in x-Richtung Abmessung in y-Richtung		vven	Einheit	Meldung
Abmessung in x-Richtung Abmessung in y-Richtung				
Abmessung in y-Richtung	Cx	0.400	m	
	cy	0.300	m	
🕀 Exzentrizität				
Exzentrizität in x-Richtung	ex	-0.300	m	
Exzentrizität in y-Richtung	ey	0.000	m	
🖯 Fundamentplatte				
Abmessung in x-Richtung	x	3.300	m	
Abmessung in y-Richtung	У	2.600	m	
Plattendicke	d	0.360	m	
🗆 Köcher				
 Köcherhöhe 	h	1.310	m	
Einbindetiefe Stütze	t	1.310	m	
Abmessung in x-Richtung				
Gesamte Köcherabmessung	d _{kx}	1.140	m	
 Obere Köcherwandstärke 	tox	0.270	m	
 Oberes Stützenspiel 	a _{ox}	0.100	m	
 Untere Köcherwandstärke 	tux	0.320	m	
 Unteres Stützenspiel 	a _{ux}	0.050	m	
Innenwandneigung	αχ	87.81	•	
Abmessung in y-Richtung				
E Gesamte Köcherabmessung	dky	1.240	m	
 Obere Köcherwandstärke 	toy	0.370	m	
 Oberes Stützenspiel 	aoy	0.100	m	
 Untere Köcherwandstärke 	tuy	0.420	m	
 Unteres Stützenspiel 	auy	0.050	m	
Innenwandneigung	αγ	87.81	•	
🗏 Überschüttung	1			
 Höhe der Überschüttung 	ü	1.000	m	

Bild 8.6: Gerundete Fundamentabmessungen

8.1.3.1 Mindesteinbindetiefe der Stütze

Maßgebend bei der Ermittlung der ersten Einbindetiefe T₁ der Stütze in den Köcher ist Lastfall LF1 bzw. LF2 (beide Lastfälle mit $e_x > 2,0$). Die Exzentrizität *e* ergibt sich zu:

$$e_x = |\frac{M}{P_z \cdot c}| = \frac{250,00}{300,00 \cdot 0,40} = 2,083$$

Da 2,0 < 2,083 ist, ermittelt sich die erforderliche Einbindetiefe *erf t* zu:

 $erf\,t=min\,T_1=2\cdot c=2\cdot 40=80\,cm$

Mindesteinbindetiefe der Stütze ¦ Knoten 1 ¦ LF2			
Bemessungswert aus Auflagerkräfte und -momente			
Am Knoten	Nr.	1	
— Lastfall	LF	LF2	
Bemessungsituation	BS	GR	
- Vertikalkraft	Pz,d	100.00	kN
Horizontalkraft in x-Richtung	Px,d	0.00	kΝ
Horizontalkraft in y-Richtung	PY,d	0.00	kN
Moment um die x-Achse	M _{X,d}	0.00	kNm
Moment um die y-Achse	MY,d	327.00	kNm
Bezogene Lastausmitte in x-Richtung	ex	8.175	
Stützeneinspannmoment um die y-Achse	MY	327.00	kNm
Breite der Stütze in x-Richtung	Cx	0.400	m
🗆 Bezogene Lastausmitte in y-Richtung	ey	0.000	
 Stützeneinspannmoment um die x-Achse 	Mx	0.00	kN
Breite der Stütze in y-Richtung	cy	0.300	m
∃ Nachweis			
Vorhandene Einbindetiefe	vorh t	1.310	m
Erforderliche Einbindetiefe	erf t	0.800	m
Nachweiskriterium	Kriterium	0.611	

Bild 8.7: Nachweis der Mindesteinbindetiefe für LF1

Mindesteinbindetiefe der Stütze ¦ Knoten 1 ¦ LF1			
Bemessungswert aus Auflagerkräfte und -momente			
- Am Knoten	Nr.	1	
— Lastfall	LF	LF1	
- Bemessungsituation	BS	GR	
- Vertikalkraft	P Z,d	300.00	kN
 Horizontalkraft in x-Richtung 	P x,d	-50.00	kN
 Horizontalkraft in y-Richtung 	PY,d	20.00	kN
 Moment um die x-Achse 	M _{X,d}	100.00	kNm
Moment um die y-Achse	MY,d	250.00	kNm
🛱 Bezogene Lastausmitte in x-Richtung	ex	2.083	
 Stützeneinspannmoment um die y-Achse 	MY	250.00	kNm
Breite der Stütze in x-Richtung	Cx	0.400	m
🛱 Bezogene Lastausmitte in y-Richtung	ey	1.111	
 Stützeneinspannmoment um die x-Achse 	Mx	100.00	kN
Breite der Stütze in y-Richtung	cy	0.300	m
□ Nachweis			
Vorhandene Einbindetiefe	vorh t	1.310	m
Erforderliche Einbindetiefe	erf t	0.800	m
Nachweiskriterium	Kriterium	0.611	

Bild 8.8: Nachweis der Mindesteinbindetiefe für LF2

8.1.4 Horizontalkräfte auf Köcherwände

Exemplarisch wird die größte Horizontalkraft in y-Richtung senkrecht auf die Köcherwand in x-Richtung ermittelt:

$$\max H_{oy} = |\frac{6 \cdot M_{\chi}}{5 \cdot t} + \frac{6}{5} \cdot P_{Y}| = |\frac{6 \cdot 150}{5 \cdot 1.31} + \frac{6}{5} \cdot 0| = 137,40 \text{ kN}$$

In der Ergebnismaske 2.3 Erforderliche Bewehrung findet sich unter den Detailergebnissen der gleiche Wert. Dort kann auch die zugehörige Horizontalkraft in x-Richtung senkrecht auf die Köcherwand in y-Richtung abgelesen werden.

Horizontale Köcherbügel BuY (in y-Richtung außen) ¦ Pos: 6,9 ¦ Name: BuY ⊟ Beanspruchung aus maximaler Horizontalkraft in y-Richtung (LF max Hoy)							
Bemessungswert aus Auflagerkräfte und -momente							
- Am Knoten	Nr.	1					
- Lastfall	LF	LF3					
- Bemessungsituation	BS	GR					
- Vertikalkraft	Pz,d	500.00	kN				
 Horizontalkraft in x-Richtung 	Px,d	0.00	kN				
 Horizontalkraft in y-Richtung 	P _{Y,d}	0.00	kN				
Moment um die x-Achse	M _{X,d}	150.00	kNm				
Moment um die y-Achse	MY,d	-150.00	kNm				
- Hebelam	z	1.092	m				
 Obere Horizontalkraft in y-Richtung 	max H _{oy}	137.40	kN				
 Obere Horizontalkraft in x-Richtung 	zug H _{ox}	137.40	kN				

Bild 8.9: Maximale Horizontalkraft in y-Richtung

Der nächste Detaileintrag enthält die Ergebnisse des Lastfalls, die zur größten Horizontalkraft in x-Richtung senkrecht auf die Köcherwand in y-Richtung führen. Auch hier wird die zugehörige Horizontalkraft in y-Richtung senkrecht auf die Köcherwand in x-Richtung ausgewiesen.

Ho	rizontale Köcherbügel BuY (in y-Richtung außen) ¦ Pos: 6,9 ¦ Nam	e: BuY		
±١	Beanspruchung aus maximaler Horizontalkraft in y-Richtung (LF max H _{oy}))		
	Beanspruchung aus maximaler Horizontalkraft in x-Richtung (LF max H_{ox})			
- (Bemessungswert aus Auflagerkräfte und -momente			
	Am Knoten	Nr.	1	
	Lastfall	LF	LF2	
	Bemessungsituation	BS	GR	
	Vertikalkraft	Pz,d	100.00	kN
	Horizontalkraft in x-Richtung	P _{X,d}	0.00	kN
	Horizontalkraft in y-Richtung	PY,d	0.00	kN
	Moment um die x-Achse	Mx,d	0.00	kNm
	Moment um die y-Achse	M _{Y,d}	327.00	kNm
	Hebelarm	z	1.092	m
	Obere Horizontalkraft in y-Richtung	zug H _{oy}	0.00	kN
	Obere Horizontalkraft in x-Richtung	max H _{ox}	299.54	kN

Bild 8.10: Maximale Horizontalkraft in x-Richtung

8.1.5 Bügelzugkräfte und Bügelbewehrung

8.1.5.1 Horizontale Köcherbügel Bu (allseitig außen)

Im Lastfall mit der maximalen Horizontalkraft in y-Richtung ergeben sich folgende Zugkräfte:

8

Ľ	 Deanspruchung aus maximaler nonzontaikrait in y-nichtung (LF max noy) 			
	Bemessungswert aus Auflagerkräfte und -momente			
	Hebelam	z	1.092	m
	Obere Horizontalkraft in y-Richtung	max H _{oy}	137.40	kN
	Obere Horizontalkraft in x-Richtung	zug H _{ox}	137.40	kN
	🕞 Zugkraft dieses Lastfalles zur Bemessung der allseitig außenliegenden Büg	maßg Z _{Bu} (max H _{oy})	113.33	kN
	🛱 Aus Biegung der Köcherwand in x-Richtung			
	Vorhandene Zugkraft im kompletten Bewehrungsstahl	Z _{Bieg,x} (max H _{oy})	82.66	kN
	Anteilige Zugkraft im allseitig außenliegenden Bügel aus Biegung der	Z _{Bu,Bieg,x} (max H _{oy})	40.84	kN
	🖓 Aus Zug der Köcherwand in y-Richtung			
	 Anteilige Zugkraft im allseitig au ßenliegenden B ügel aus Zug der K öcł 	Z _{Bu,Zug,y} (max H _{oy})	34.35	kN
	Obere Horizontalkraft in x-Richtung	Hox	137.40	kN
	🕀 Aus Biegung der Köcherwand in y-Richtung			
		Z _{Bieg,y} (max H _{oy})	126.98	kN
	Anteilige Zugkraft im allseitig außenliegenden Bügel aus Biegung der	ZBu,Bieg,y (max Hoy)	78.98	kN
	🛱 Aus Zug der Köcherwand in x-Richtung			
	 Anteilige Zugkraft im allseitig außenliegenden Bügel aus Zug der Köcł 	Z _{Bu,Zug,x} (max H _{oy})	34.35	kN
	Obere Horizontalkraft in y-Richtung	Hoy	137.40	kN

Bild 8.11: Maximale Zugkraft in horizontalen Köcherbügeln – Lastfall mit größter Horizontalkraft in y-Richtung

Im Lastfall mit der maximalen Horizontalkraft in x-Richtung ergeben sich folgende Zugkräfte:

Horizontale Köcherbügel (allseitich außen) ¦ Pos: 5,8 ¦ Name: Bu			
- Zugkraft dieses Lastfalles zur Bemessung der allseitig außenliegenden Bügel	maßg Z _{Bu} (max H _{ox})	176.65	kN
— Aus Biegung der Köcherwand in x-Richtung			
Vorhandene Zugkraft im kompletten Bewehrungsstahl	Z _{Bieg,x} (max H _{ox})	0.00	kN
Anteilige Zugkraft im allseitig außenliegenden Bügel aus Biegung der Kö	ZBu,Bieg,x (max Hox)	0.00	kN
Aus Zug der Köcherwand in y-Richtung			
 Anteilige Zugkraft im allseitig außenliegenden Bügel aus Zug der Köcher 	ZBu, Zug, y (max Hox)	74.89	kN
Obere Horizontalkraft in x-Richtung	Hox	299.54	kN
- Aus Biegung der Köcherwand in y-Richtung			
Vorhandene Zugkraft im kompletten Bewehrungsstahl	Z _{Bieg,y} (max H _{ox})	291.77	kN
Anteilige Zugkraft im allseitig außenliegenden Bügel aus Biegung der Kö	ZBu,Bieg,y (max Hox)	176.65	kN
Aus Zug der Köcherwand in x-Richtung			
 Anteilige Zugkraft im allseitig außenliegenden Bügel aus Zug der Köcher 	Z _{Bu,Zug,x} (max H _{ox})	0.00	kN
Obere Horizontalkraft in y-Richtung	Hoy	0.00	kN
			-

Bild 8.12: Maximale Zugkraft in horizontalen Köcherbügeln – Lastfall mit größter Horizontalkraft in x-Richtung

An der Außenseite des Köchers sind die Zugkräfte im gesamten Bewehrungsstahl angetragen, die aus Biegung dieser Köcherwand entstehen. Oberhalb der Bügelskizze ist die anteilige Zugkraft aus Biegung ablesbar, die auf den horizontalen Köcherbügel entfällt. Zu dieser wird die anteilige Zugkraft aus Zug der jeweiligen Köcherwand addiert.

Vor der Ermittlung der maßgebenden Zugkraft soll kurz auf die anteilige Zugkraft aus Biegung im horizontalen, allseitig außenliegenden Köcherbügel eingegangen werden. Hierzu wird die Biegung der Köcherwand in y-Richtung betrachtet, die im Lastfall der größten Horizontalkraft in x-Richtung vorliegt.

Zunächst ist das einwirkende Biegemoment zu bestimmen.

Bild 8.13: Einwirkendes Biegemoment

Die Hebelarme a_2 , a_3 und a_4 ermitteln sich wie folgt:

$$\begin{aligned} a_{2,y} &= \frac{c_y}{4} = \frac{30}{4} = 7,5 \text{ cm} \\ a_{3,y} &= \frac{c_y}{2} + a_{oy} + \text{nom} \, c_k + \frac{d_s}{2} = \frac{30}{2} + 10 + 7,0 + \frac{1,4}{2} = 32,7 \text{ cm} \\ a_{4,y} &= \frac{c_y}{2} + a + t_{oy} - \text{nom} \, c_k - \frac{d_s}{2} = \frac{30}{2} + 10 + 37 - 7,0 + \frac{1,4}{2} = 54,3 \text{ cm} \end{aligned}$$

Damit kann das einwirkende Moment unter Gebrauchslast um den Punkt P ermittelt werden.

$$\begin{split} \mathbf{M}_{\mathbf{E} \mathbf{\,d},\mathbf{y}} &= \gamma \cdot \left(\frac{\max \mathbf{H}_{\mathbf{ox}}}{4} \cdot \left(\mathbf{a}_{3,\mathbf{y}} + \mathbf{a}_{4,\mathbf{y}} \right) - \frac{\max \mathbf{H}_{\mathbf{ox}}}{2} \cdot \mathbf{a}_{2,\mathbf{y}} \right) = \\ &= 1,0 \cdot \left(\frac{299,54}{4} \cdot \left(0,327 + 0,543 \right) - \frac{299,54}{2} \cdot 0,075 \right) = 53,92 \text{ kNm} \end{split}$$

Aus Biegung der Köcherwand in y-Richtung			
Vorhandene Zugkraft im kompletten Bewehrungsstahl	Z _{Bieg,y} (max	291.77	kN
Bemessungswert des einwirkenden Biegemoments	MEd.y	53.92	kNm
- Hebelarm	a2.y	0.075	m
Hebelam	a3.y	0.327	m
Hebelam	a4.y	0.543	m
Erforderliche Biegebruchsicherheit	γ	1.000	
 Bemessungswert des aufnehmbaren Moments 	MRd,y	53.93	kNm
 Statische Nutzh	d	0.210	m
Gewählte Festigkeitsklasse		Beton C35/4	
Bemessungswert des Betons	fed	19833.3	kPa
Beiwert zur Berücksichtigung der Langzeitwirkung	ασο	0.850	
 Charakteristische Zylinderfestigkeit 	fok	35000.0	kPa
Teilsicherheitsbeiwert des Betons	γc	1.500	
Rechnerische Bruchdehnung des Betons	εcu	3.500	‰
Betondehnung	Sc.	3.500	‰
 Höhe der dreieckförmigen Betondruckzonenfläche 	hp	0.017	m
 Höhe der rechteckförmigen Betondruckzonenfläche 	hR	0.025	m
Breite der Betondruckzonenfläche	b	0.437	m
 Fläche der Betondruckzone 	A	147.113	cm ²
 Bemessungswert der Betondruckkraft 	Fod	291.77	kN
Bemessungswert der Streckgrenze	fyd	434783.0	kPa
 Charakteristischer Wert der Streckgrenze des Betonstahls 	fyk	500000.0	kPa
 Teilsicherheitsbeiwert f ür Betonstahl 	γs	1.150	
 Dehnung der horizontalen Köcherwandbewehrung 	εzu	10.470	‰
Mindestdehnung der horizontalen Köcherwandbewehrung	min ε _{zu}	2.000	‰
Hebelarm der inneren Kräfte	z	0.185	m

Bild 8.14: Details – Horizontale Köcherbügel

Die Höhe der Druckzone setzt sich aus einem dreieckförmigen und einem rechteckförmigen Druckzonenteil zusammen. Der Faktor 0,8 entfällt hier, da diese Höhe bereits mit dem Beiwert reduziert ist. Die Druckzonenhöhen ergeben sich aus der Bemessung.

Auf die Betonbemessung wird bei der Ermittlung der Biegebruchsicherheit im Kapitel 8.1.6 eingegangen.

Um nun die anteilige Zugkraft bestimmen zu können, die auf den horizontalen Köcherbügel entfällt, sind zunächst die Hebelarme a₅ und a₆ zu ermitteln.

$$\begin{split} \mathbf{a}_5 &= \mathbf{t}_{\mathrm{ox}} - \mathsf{nom}\,\mathbf{c}_{\mathrm{k}} - \frac{\mathbf{d}_{\mathrm{s}}}{2} - \frac{0.8 \cdot \mathbf{z}_{\mathsf{Du}}}{4} = \mathbf{t}_{\mathrm{ox}} - \mathsf{nomc}_{\mathrm{k}} - \frac{\mathbf{d}_{\mathrm{s}}}{2} - \frac{0.8 \cdot (\mathbf{h}_{\mathrm{D}} + \mathbf{h}_{\mathrm{R}})}{4} = \\ &= 27 - 7 - \frac{1.4}{2} - \frac{1.7 + 2.5}{4} = 18,25 \; \mathrm{cm} \\ \mathbf{a}_{6,y} &= \frac{\mathbf{c}_{y}}{8} + \mathbf{a}_{\mathrm{oy}} + \mathbf{t}_{\mathrm{oy}} - \mathsf{nom}\,\mathbf{c}_{\mathrm{k}} - \frac{\mathbf{d}_{\mathrm{s}}}{2} = \frac{30}{8} + 10 + 37 - 7 - \frac{1.4}{2} = 43,05 \; \mathrm{cm} \end{split}$$

Damit kann der Lastausbreitungswinkel ϑ_1 bestimmt werden.

$$\theta_1 = \arctan \frac{a_5}{a_6} = \arctan \frac{18,25}{43,05} = 22,97$$

Mit diesem Winkel und der im Viertelspunkt angreifenden anteiligen Horizontalkraft max HoX lässt sich nun die Größe der Druckstrebenkraft D1 ermitteln.

$$D1 = \frac{\max H_{oX}}{4 \cdot \sin \theta_1} = \frac{299,54}{4 \cdot \sin 22,97} = 191,89 \text{ kN}$$

Die Horizontalkomponente der Druckstrebenkraft D1 ist jener Anteil der kompletten Zugkraft, die sich aus Biegung der Köcherwand in y-Richtung ergibt. Er wird ermittelt zu:

 $Z_{Bu,Bieg} = D1 \cdot \cos \theta_1 = 191,89 \cdot \cos 22,97 = 176,65 \text{ kN}$

Diese Zugkraft findet sich auch in den Details von RF-/FUND Pro.

Geometrische Größen zur Aufteilung der Zugkraft			
 Tangens des Lastausbreitungswinkels un innerhalb der Köcl 	tan ບ _{1.y}	0.424	
Lastausbreitungswinkel un innerhalb der Köcherwand in y-R	υ _{1,y}	22.97	•
Vertikale Kathete der Druckstrebe innerhalb der Köcherwan	a5,x	18.25	cm
Horizontale Kathete der Druckstrebe innerhalb der Köcherwa	a6.y	43.05	cm
Hebelarm innerhalb der Köcherwand in y-Richtung	a1.y	19.30	cm
Anteilige Zugkraft im allseitig außenliegenden Bügel aus Biegung	ZBu, Bieg, v (m	176.65	kN

Bild 8.15: Details – Geometrische Größen zur Aufteilung der Zugkraft

Mit diesen Hintergrundinformationen ist nun nachvollziehbar, wie die maximale Zugkraft im horizontalen Köcherbügel bestimmt wird. Sie ergibt sich bei der Biegung der Köcherwand in y-Richtung infolge der maximalen Horizontalkraft, die in x-Richtung vorliegt:

8

maßg $Z_{Bu} = 176,65 \text{ kN}$

Da eine Stahldehnung jenseits der Stahldehnung an der Streckgrenze vorliegt, wird die Streckgrenze als vorherrschende Stahlspannung zur Ermittlung des erforderlichen Stahlquerschnitts benutzt. Im Programm sieht dies so aus:

	🛛 Erforderlicher Stahlquerschnitt			
	 Maßgebende Zugkraft zur Bemessung der allseitig außenliegenden Bü 	maßg Z _{Bu}	176.65	kN
ſ	Streckgrenze des Bewehrungsstahls	fyk	500000.0	kPa
	Maßgebender erforderlicher Stahlquerschnitt	maßg erf A _{s,E}	4.063	cm ²

Bild 8.16: Details – Erforderlicher Stahlquerschnitt für Bügel

Es wird folgende Bewehrung gewählt:

Bild 8.17: Rendering der horizontalen Köcherbügel

Folgende Tabelle bietet einen Überblick über die Bewehrungsdetails.

D Deteile eine Stillere Demekanne			
E Details zur gewaniten bewenrung			
Oben liegende Bügel			
 Vorhandene Stahlquerschnittsfläche 	vorh A _{s,Bu}	4.618	cm ²
 Gewählter Durchmesser des Bügels 	d _{s,Bu}	14	mm
 Gewählte Anzahl der Bügel 	n Bu	3	
 Statisch erforderliche Anzahl an Bügeln 	erf n _{Bu}	3	
 Konstruktiv mögliche Anzahl an Bügeln 	mög n Bu	3	
🖵 Abstand der Bügel	sBu	125	mm
Max. Länge des bewehrten Bereichs	Imax,BuX	261	mm
Verlegebreite	Verleg.,BuX	437	mm
Mindestabstand von der oberen Köcherseite	Z min,BuX	175	mm
🗇 Unten liegende Bügel			
 Köcher mit rauer Innenseite: Bewehrung nur konstruktiv 			
Vorhandene Stahlquerschnittsfläche	vorh A _{s,Bu}	7.697	cm ²
 Gewählter Durchmesser des Bügels 	d _{s,Bu}	14	mm
— Gewählte Anzahl der Bügel	nBu	5	
 Statisch erforderliche Anzahl an Bügeln 	erf n _{Bu}	0	
 Konstruktiv mögliche Anzahl an Bügeln 	mög n Bu	5	
🗇 Abstand der Bügel	SBu	150	mm
🕀 Max. Länge des bewehrten Bereichs	Imax,BuX	714	mm
- Verlegebreite	Verleg.,BuX	873	mm
Mindestabstand von der unteren Köcherseite	Z min,BuX	159	mm

Bild 8.18: Details – Gewählte Bewehrung (Bügel Bu)

8.1.5.2 Horizontale Köcherbügel BuY (in y-Richtung außen)

In gleicher Weise ist die Zugkraft in den Bügeln zu bestimmen, die sich an den Außenseiten der Köcherwände in y-Richtung befinden.

Im Lastfall mit der maximalen Horizontalkraft in y-Richtung liegen folgende Zugkräfte vor:

Bild 8.19: Maximale Zugkraft im außenliegenden Bügel (y-Richtung) – Lastfall mit größter Horizontalkraft in y-Richtung

🖃 Zugkraft dieses Lastfalls zur Bemessung der in Y-Richtung außenlieger	maßg Z _{BuY} (r	115.12	kN
Aus Biegung der Köcherwand in y-Richtung			
Vorhandene Zugkraft im kompletten Bewehrungsstahl	Z _{Bieg,y} (max	291.77	kN
 Bemessungswert des einwirkenden Biegemoments 	MEd,y	53.92	kNm
→ Bemessungswert des aufnehmbaren Moments	MRd,y	53.93	kNm
⊕ Geometrische Gr ö ßen zur Aufteilung der Zugkraft			
Anteilige Zugkraft der in y-Richtung außenliegenden Bügel	ZBuY,Bieg.y (115.12	kN
Aus Zug der Köcherwand in x-Richtung			
Anteilige Zugkraft der in y-Richtung außenliegenden Bügel	ZBuY,Zug,x (n	74.89	kN
Obere Horizontalkraft in x-Richtung	Hox	299.54	kN

Bild 8.20: Maximale Zugkraft im außenliegenden Bügel (y-Richtung) – Lastfall mit größter Horizontalkraft in x-Richtung

Die größte Zugkraft tritt infolge Biegung der Köcherwand in y-Richtung auf, die im Lastfall der maximalen Horizontalkraft in x-Richtung vorliegt:

maßg $Z_{BuY} = 115,12 \text{ kN}$

Damit wird folgender Stahlquerschnitt für die Bügel BuY ermittelt:

Erforderlicher Stahlquerschnitt			
Maßgebende Zugkraft zur Bemessung der in y-Richtung außenliegend	maßg Z _{BuY}	115.12	kN
Streckgrenze des Bewehrungsstahls	fyk	500000.0	kPa
Maßgebender erforderlicher Stahlquerschnitt	maßg erf A _{s,E}	2.648	cm ²

Bild 8.21: Details – Erforderlicher Stahlquerschnitt für Bügel BuY

Es wurde folgende Bewehrung gewählt:

8

Bild 8.22: Rendering der Bügelbewehrung BuY

In den Bewehrungsdetails finden sich folgende Angaben zur Bemessung.

🛱 Details zur gewählten Bewehrung			
🕞 Oben liegende Bügel			
 Vorhandene Stahlquerschnittsfläche 	vorh As, BuY	3.079	cm ²
 Gewählter Durchmesser des Bügels 	d _{s,Bu} y	14	mm
Gewählte Anzahl der Bügel	nBuY	2	
 Statisch erforderliche Anzahl an Bügeln 	erf n BuY	2	
 Konstruktiv mögliche Anzahl an Bügeln 	mög n BuY	3	
Abstand der Bügel	SBuY	125	mm
Max. Länge des bewehrten Bereichs	Imax,BuY	317	mm
- Verlegebreite	IVerleg.,BuY	437	mm
Mindestabstand von der oberen Köcherseite	Z min,BuY	120	mm
🔁 Unten liegende Bügel	· · · ·		
 Köcher mit rauer Innenseite: Bewehrung nur konstruktiv 			
Vorhandene Stahlquerschnittsfläche	vorh As, BuY	9.236	cm ²
 Gewählter Durchmesser des Bügels 	d _{s,Bu} y	14	mm
— Gewählte Anzahl der Bügel	nBuY	6	
 Statisch erforderliche Anzahl an Bügeln 	erf n BuY	0	
Konstruktiv mögliche Anzahl an Bügeln	mög n BuY	6	
🗇 Abstand der Bügel	SBuY	150	mm
Max. Länge des bewehrten Bereichs	Imax,BuY	782	mm
- Verlegebreite	IVerleg.,BuY	873	mm
Mindestabstand von der unteren Köcherseite	Z min,BuY	91	mm

Bild 8.23: Details – Gewählte Bewehrung (Bügel BuY)

8.1.5.3 Horizontale Köcherbügel BuX (in x-Richtung außen)

Die in x-Richtung außen liegende Bügelbewehrung ermittelt sich analog.

Bild 8.24: Rendering der Bügelbewehrung BuX

🔁 Details zur gewählten Bewehrung	· · ·		
🔁 Oben liegende Bügel			
 Vorhandene Stahlquerschnittsfläche 	vorh As, BuX	1.539	cm ²
Gewählter Durchmesser des Bügels	d s,BuX	14	mm
Gewählte Anzahl der Bügel	n BuX	1	
Statisch erforderliche Anzahl an Bügeln	erf n BuX	1	
Konstruktiv mögliche Anzahl an Bügeln	mög n BuX	3	
🖃 Abstand der Bügel	SBuX	125	mm
Max. Länge des bewehrten Bereichs	Imax,BuX	331	mm
Verlegebreite	IVerleg.,BuX	437	mm
Mindestabstand von der oberen Köcherseite	Z min, BuX	106	mm
🖵 Unten liegende Bügel			
Köcher mit rauer Innenseite: Bewehrung nur konstruktiv			
Vorhandene Stahlquerschnittsfläche	vorh As, BuX	9.236	cm ²
 Gewählter Durchmesser des Bügels 	d s,BuX	14	mm
Gewählte Anzahl der Bügel	n BuX	6	
Statisch erforderliche Anzahl an Bügeln	erf n BuX	0	
Konstruktiv mögliche Anzahl an Bügeln	mög n BuX	6	
🛱 Abstand der Bügel	SBuX	150	mm
Max. Länge des bewehrten Bereichs	Imax,BuX	796	mm
Verlegebreite	Verleg.,BuX	873	mm
Mindestabstand von der unteren Köcherseite	Z min,BuX	77	mm

Bild 8.25: Details – Gewählte Bewehrung (Bügel BuX)

8

8.1.5.4 Vertikale Köcherbügel Vx

Zur Ermittlung der vertikalen Randbewehrung der Köcherwand in x-Richtung wird der Lastfall betrachtet, der zur maximalen Horizontalkraft in x-Richtung führt.

Bild 8.26: Aufteilung der Horizontalkraft auf die Köcherwände

Die Horizontalkraft wird gleichmäßig auf beide Köcherwandscheiben aufgeteilt:

 $\max Z_{ho,x} = 149,77 \text{ kN}$

Die Neigung der Betondruckstrebe, die sich diagonal über die Köcherwandscheibe in x-Richtung ausbildet, wird wie folgt ermittelt:

Bild 8.27: Kräftemodell zur Ermittlung der vertikalen Randzugkraft

$$\tan lpha = rac{109,17}{83,4} = 1,309$$

Damit kann die Randzugkraft bestimmt werden:

 $\max \mathsf{Z}_{\mathsf{vo},\mathsf{x}} = \tan\alpha \cdot \max \mathsf{Z}_{\mathsf{ho},\mathsf{x}} = \mathsf{1}{,}\mathsf{309} \cdot \mathsf{149}{,}\mathsf{77} = \mathsf{196}{,}\mathsf{04} \ \mathsf{kN}$

Anschließend wird wieder der Gesamtbewehrungsquerschnitt bestimmt, der erforderlich ist, um die Zugkräfte aufzunehmen.

erf As
$$= \frac{\max Z_{vo,x}}{f_{yd}} = \frac{196,04}{43,4783} = 4,509 \text{ cm}^2$$

 $f_{yd} = \frac{500\,000 \text{ kPa}}{1,15} = 43,4783 \text{ kN/cm}^2$

8 Beispiele

Teilt man den Gesamtbewehrungsquerschnitt durch die doppelte Querschnittsfläche eines vertikalen Bügels, so erhält man die erforderliche Anzahl der vertikalen Bügel.

8

Es werden Bügel mit dem Durchmesser Ø12 mm gewählt.

$$erf\,n=\frac{erf\,As}{2\cdot As_{B\ddot{u}qel}}=\frac{4{,}509}{2\cdot 1{,}13}=1{,}99$$

Für jeden Rand der Köcherwandscheibe in x-Richtung werden zwei Bügel gewählt. Damit ergibt sich folgendes Bewehrungsbild:

Bild 8.28: Rendering der Bügelbewehrung Vx

Tabellarisch wird die Bewehrung wie folgt ausgegeben:

🖃 Details zur gewählten Bewehrung			
 Vorhandener Stahlquerschnitt 	vorh A _{s,Vx}	4.524	cm ²
 Gewählter Durchmesser der Bügel 	d _{s,Vx}	12	mm
 Gewählte Anzahl der Bügel pro Rand 	gew n vx	2	
 Statisch erforderliche Anzahl an Bügeln pro Rand 	erf n vx	2	
 Konstruktiv mögliche Anzahl an Bügeln pro Rand 	mög n v _x	2	
Abstand der Bügel	sγx	116	mm

Bild 8.29: Details – Gewählte Bewehrung (Bügel Vx)

8.1.5.5 Vertikale Köcherbügel Vy und Köcherwandbewehrung

Die Ermittlung der Randbewehrung für die Köcherwandscheibe in y-Richtung erfolgt analog – mit folgendem Ergebnis:

🛱 Details zur gewählten Bewehrung			
Vorhandener Stahlquerschnitt	vorh As,vy	2.262	cm ²
Gewählter Durchmesser der Bügel	ds,Vy	12	mm
Gewählte Anzahl der Bügel pro Rand	nvy	1	
Statisch erforderliche Anzahl an Bügeln pro Rand	ef n vy	1	
Konstruktiv mögliche Anzahl an Bügeln pro Rand	mögnvy	1	
Abstand der Bügel	svy	100	mm

Bild 8.30: Details – Gewählte Bewehrung (Bügel Vy)

Die Randbewehrungen werden mit der Biegebewehrung der Fundamentplatte verankert. Damit ist die Ermittlung der statisch erforderlichen Bewehrung abgeschlossen.

Konstruktiv werden in jede Wandscheibe nun noch so viele Bügel eingelegt, wie es der in Maske *2.6 Köcherbewehrung* gewählte Abstand von 20 cm für die Köcherwandbewehrung in x- bzw. y-Richtung zulässt.

Bild 8.31: Rendering der Köcherwandbewehrung in x- und y-Richtung

8.1.6 Biegebruchsicherheit der Köcherwand

Nach der Ermittlung der Bewehrung werden in den folgenden Kapiteln weitere Nachweisdetails vorgestellt.

Einwirkendes Moment M

Das einwirkende Moment unter Gebrauchslast liegt für die Biegung der Köcherwand in y-Richtung infolge der maximalen Horizontalkraft in x-Richtung mit M = 53,92 kNm vor.

Bruchmoment M_{Ed}

Das berechnete Lastmoment entspricht gleichzeitig dem Bruchmoment $M_{Ed} = 53,92$ kNm.

Aufnehmbares Moment M_{Rd}

Stauchung an der Innenseite und Dehnung an der Außenseite der Köcherwand in y-Richtung werden so lange iterativ verändert, bis die Kräfte im Stahl und im Beton, die mit diesen Verformungen einhergehen, zusammen mit ihrem Abstand ein inneres Moment M_{Rd} bilden, das größer als das Bruchmoment M_{Rd} ist.

Nach der Vorgabe eines Stahlquerschnitts kann abermals ein inneres Moment M_{Rd} bestimmt werden. Ausgehend vom Bruchdehnungszustand wird die Verformung von Stahl und Beton so lange verändert, bis in beiden Materialien ein Kräftegleichgewicht herrscht. Dieses aufnehmbare Moment M_{Rd} soll nun für die gewählte Bewehrung bestimmt werden. Am Ende der Iterationen liegt folgendes Ergebnis vor:

Köcherwand in y-Richtung	Kriterium	0.884	
- → Bemessungswert aus Auflagerkräfte und -momente			
⊕ Bemessungswert des einwirkenden Biegemoments	MEd.y	53.92	kNm
Bemessungswert des aufnehmbaren Moments	M Rd, y	61.01	kNm
 Statische Nutzhöhe 	d	0.210	m
 Gewählte Festigkeitsklasse 		Beton C35/45	
 Bemessungswert des Betons 	fod	19833.3	kPa
 Beiwert zur Berücksichtigung der Langzeitwirkung 	α _{cc}	0.850	
 Charakteristische Zylinderfestigkeit 	fck	35000.0	kPa
 Teilsicherheitsbeiwert des Betons 	γc	1.500	
 Rechnerische Bruchdehnung des Betons 	6cu	3.500	‰
- Betondehnung	5c	3.500	‰
 Höhe der dreieckförmigen Betondruckzonenfläche 	hp	0.017	m
 Höhe der rechteckförmigen Betondruckzonenfläche 	hR	0.030	m
Breite der Betondruckzonenfläche	b	0.437	m
 – Fläche der Betondruckzone 	A	168.857	cm ²
Bemessungswert der Betondruckkraft	Fod	334.90	kN
 Charakteristischer Wert der Streckgrenze des Betonstahls 	fyk	500000.0	kPa
 Teilsicherheitsbeiwert f ür Betonstahl 	γs	1.150	
Elastizitätsmodul des Betonstahls	Es	2.00000E+08	kPa
 Dehnung der horizontalen Köcherwandbewehrung 	ξzu	8.990	‰
 Gesamter Bewehrungsquerschnitt 	vorh As	7.697	cm ²
 Bewehrungsquerschnitt der allseitig außenliegenden Bügel 	vorh A _{s,Bu}	4.618	cm ²
 Bewehrungsquerschnitt der in y-Richtung außenliegenden Bügel 	vorh As, BuY	3.079	cm ²
 Mindestdehnung der horizontalen Köcherwandbewehrung 	min ε _{zu}	2.000	‱
 Vorhandene Stahlspannung 	σs	434783.0	kPa
Hebelam der inneren Kräfte	z	0.182	m

Bild 8.32: Aufnehmbares Moment M_{Rd,v}

Die folgenden beiden Skizzen erläutern die Parameter des aufnehmbaren Moments M_{Rd}.

Bild 8.34: Form der Druckzone (Schnitt Köcherwand mit Blickrichtung in y-Richtung)

Teilt man das aufnehmbare Moment $M_{Rd} = 61,01$ kNm durch das zuvor ermittelte Bemessungsmoment $M_{Rd} = 53,92$ kNm, so erhält man die Biegebruchsicherheit, die mit der gewählten Bewehrung vorliegt.

-[EBemessungswert des einwirkenden Biegemoments	MEd.y	53.92	kNm
-[∃ Bemessungswert des aufnehmbaren Moments	M _{Rd,y}	61.01	kNm
-[∃ Nachweis			
	Vorhandene Biegebruchsicherheit	vorh γ	1.131	
	Erforderliche Biegebruchsicherheit	erf γ	1.00	
	Nachweiskriterium	Kriterium	0.884	

Bild 8.35: Ermittlung der Biegebruchsicherheit

Die vorhandene Biegebruchsicherheit lässt sich weiter steigern, wenn die Anzahl der Bügel in y-Richtung außen von zwei auf konstruktiv mögliche drei Bügel erhöht wird. Das innere Moment M_{Rd} und die vorhandene Biegebruchsicherheit sind nach einer Neuberechnung:

-	🕀 Bemessungswert des einwirkenden Biegemoments	MEd.y	53.92	kNm
-	🕀 Bemessungswert des aufnehmbaren Moments	MRd.y	71.64	kNm
4	🔁 Nachweis			
	Vorhandene Biegebruchsicherheit	vorh γ	1.329	
	Erforderliche Biegebruchsicherheit	erf γ	1.00	
	Nachweiskriterium	Kriterium	0.753	

Bild 8.36: Biegebruchsicherheit nach veränderter Bewehrung

8.1.7 Betonspannungen in Köcherwänden

Der Nachweis der Betonspannungen in den Köcherwänden wird durch einen Vergleich der Spannungen $\sigma_{c,oben}$ mit dem Bemessungswert der Betondruckfestigkeit f_{cd} für den Beton des Fundaments geführt. Der Nachweis erfolgt gemäß [1] 10.9.6.

8

Folgende Bilder zeigen die Zusammenhänge auf.

Bild 8.37: Wirkung der horizontalen Kräfte auf Köcherwände

$$\begin{split} \sigma_{\rm c,o,x} &= \frac{\rm H_{o,x}}{\frac{\rm t}{3} \cdot \left(\rm d_{ky} - 2 \cdot t_{oy} \right)} = \frac{299,54}{\frac{1,31}{3} \cdot \left(1,24 - 2 \cdot 0,37 \right)} = 1\,371,9\,\rm kPa \\ |\sigma_{\rm c,o,x}| &\leq |\rm f_{cd}| \\ 1\,371,9\,\rm kPa \leq 19\,833,3\,\rm kPa \\ \rm Kriterium: \quad \frac{1\,371,9}{19\,833,3} = 0,069 < 1 \end{split}$$

© DLUBAL SOFTWARE 2016

8.1.8 Übergreifungslänge der Köcherbewehrung

Die maßgebende Köcherhöhe kann in Einzelfällen vom Nachweis der Übergreifungslänge nach [1] 8.7.3 bestimmt werden. Der Nachweis wird an dieser Stelle mit der maßgebenden Belastung in x-Richtung aus LF 2 geführt!

Abstand der Stützenlängsbewehrung:

 $z_x = MIN \left[0,9 \cdot (c_x - d_c) \, ; c_x - 2 \cdot d_c \right] = MIN \left[0,9 \cdot (400 - 50) \, ; 400 - 2 \cdot 50 \right] = 300 \text{ mm}$ Moment:

$$M_{ED,x} = |M_y| + P_z \cdot \left(\frac{c_x}{2} - d_c\right) = 327 + 100 \cdot \left(\frac{0.4}{2} - 0.05\right) = 342 \text{ kNm}$$

Stützenzugkraft:

$$F_{t,x} = \frac{M_{ED,x}}{z_x} - P_z = \frac{342}{0,3} - 100 = 1\,040 \text{ kN}$$

Stützendruckkraft:

$$\begin{split} F_{p,x} &= -\left(\frac{M_{ED,x}}{z_x}\right) = -\left(\frac{342}{0,3}\right) = -1\,140\,kN\\ F_x &= MAX\left(F_{t,x};F_{p,x}\right) = MAX\left(1\,040;-1\,140\right) = 1\,040\,kN \end{split}$$

Bemessungswert der Betonzugfestigkeit:

$$f_{ctd} = \alpha_{ct} \cdot f_{ctk0,05} \cdot \frac{1}{\chi_c} = 1 \cdot 2200 \cdot \frac{1}{1,5} = 1466,7 \text{ kPa}$$

Bemessungswert der Verbundfestigkeit nach [1] 8.4.2:

$$f_{bd} = 2,25 \cdot \eta_1 \cdot \eta_2 \cdot f_{ctd} = 2,25 \cdot 1 \cdot 1 \cdot 1466,7 = 3300 \text{ kPa}$$

mit

 $\eta_1=$ 1,0 : Qualität der Verbundbedingungen und Lage der Stäbe während des Betonierens – "gute" Verbundbedingungen

 $\eta_2 = 1,0$: Beiwert zur Berücksichtigung des Stabdurchmessers – $\varnothing \leq 32$ mm

Stützenzugkraft in Bewehrung V_x:

$$F_{s,x} = F_x \cdot \frac{z_x}{z_x + d_c + a_{ox} + \frac{t_{ox}}{2}} = 1040 \cdot \frac{0.3}{0.3 + 0.05 + 0.1 + \frac{0.27}{2}} = 533,33 \text{ kN}$$

Vorhandene Stahlspannung:

$$\sigma_{\rm x} = \frac{{\sf F}_{{\sf s},{\sf x}}}{{\sf A}_{{\sf s}{\sf x}}} = \frac{533,33}{0,001\,219} = 437,54~{\sf MPa}$$

Der erforderliche Grundwert der Verankerungslänge I_{b,rqd} zur Verankerung der Kraft A_s · σ_{sd} eines geraden Stab unter Annahme einer konstanten Verbundspannung f_{bd} folgt aus:

$$I_{b,rqd,x} = \frac{\phi_x}{4} \cdot \frac{\sigma_x}{f_{bd}} = \frac{0.012}{4} \cdot \frac{43\,754}{3\,300} = 0.398\,\mathrm{m}$$

Mindestübergreifungslänge:

 $\mathsf{I}_{0,\min,x} = \mathsf{MAX}\left(0,3 \cdot \alpha_{\delta,x} \cdot \mathsf{I}_{\mathsf{b},\mathsf{rqd},x}; \mathsf{15} \cdot \phi_{\mathsf{x}}; \mathsf{0}, \mathsf{2}\right) = \mathsf{MAX}\left(0,3 \cdot \mathsf{1}, \mathsf{5} \cdot \mathsf{0}, \mathsf{398}; \mathsf{15} \cdot \mathsf{0}, \mathsf{012}; \mathsf{0}, \mathsf{2}\right) = \mathsf{0}, \mathsf{20}\,\mathsf{m}$

Übergreifungslänge:

 $\mathbf{I}_{\mathbf{0},\mathbf{x}} = \alpha_{1} \cdot \alpha_{\delta} \cdot \mathbf{I}_{\mathbf{b},\mathsf{rqd},\mathbf{x}} = \mathbf{1}, \mathbf{0} \cdot \mathbf{1}, \mathbf{5} \cdot \mathbf{0}, \mathbf{398} = \mathbf{0}, \mathbf{597} \text{ m}$

mit

 $\alpha_{1} = 1,0$

 $\alpha_{\delta} = 1.5$ (Anteil gestoßener Stäbe am Gesamtquerschnitt des Betonstahls > 50 %)

Nachweis der Übergreifungslänge:

$$I_{0,x} \geq I_{0,\min,x}$$

 $0{,}597\,m\geq0{,}20\,m$

Erforderliche Einbindetiefe in x-Richtung:

$$t_{min,x} = c_k + \frac{t_{ox}}{2} + l_{0,x} + \frac{\phi_x}{2} + a_{ox} + 2 \cdot d_c = 0,07 + \frac{0,27}{2} + 0,597 + \frac{0,012}{2} + 0,1 + 2 \cdot 0,05 = 1,008 \text{ m}$$

8.1.9 Bodenmechanische Nachweise

Für die bodenmechanischen Nachweise werden die resultierenden Lasten in der Bodenfuge ohne die Auflagerkräfte bestimmt.

Zunächst wird das Volumen des Köchers berechnet.

$$\begin{split} V_{\text{K\"ocher}} &= (c_x + 2 \cdot (t_{ox} + a_{ox})) \cdot \left(c_y + 2 \cdot \left(t_{oy} + a_{oy}\right)\right) \cdot h = \\ &= (0.40 + 2 \cdot (0.27 + 0.10)) \cdot (0.30 + 2 \cdot (0.37 + 0.10)) \cdot 1.31 = 1.8\,518\ \text{m}^3 \end{split}$$

Damit kann das Köchereigengewicht bestimmt werden.

$${
m G}_{{
m cal},{
m k}}=25\cdot1,\!8\,518=46,\!30~{
m kN}$$

Anschließend muss das Gewicht der Überschüttung berechnet werden, die sich auf der Aufstandsfläche des Köchers befindet.

$$\begin{split} \mathbf{G}_{\mathsf{cov},\mathbf{k}} &= \left(\mathbf{x} \cdot \mathbf{y} - (\mathbf{c}_{\mathbf{x}} + 2 \cdot (\mathbf{t}_{\mathbf{ox}} + \mathbf{a}_{\mathbf{ox}})) \cdot \left(\mathbf{c}_{\mathbf{y}} + 2 \cdot \left(\mathbf{t}_{\mathbf{oy}} + \mathbf{a}_{\mathbf{oy}}\right)\right)\right) \cdot \ddot{\mathbf{u}} \cdot \gamma = \\ &= \left(3,3 \cdot 2,6 - (0,40 + 2 \cdot (0,27 + 0,10)) \cdot (0,30 + 2 \cdot (0,37 + 0,10))\right) \cdot 1,0 \cdot 20 = \\ &= 143,33 \text{ kN} \end{split}$$

In diesem Zusammenhang soll erläutert werden, wie RF-/FUND Pro die Resultierende einer zusätzlichen Gleichstreckenlast ermittelt: Der Benutzer gibt Beginn und Ende der Gleichstreckenlast vor, RF-/FUND Pro bestimmt jenen Teil der Last, der sich nach der Auslegung auf der Fundamentplatte befindet. Folgende Skizze veranschaulicht dieses Prinzip.

Bild 8.38: Gleichstreckenlast über Fundamentplatte

Die Gleichstreckenlast schneidet die Ränder der Fundamentplatte. Sie belastet nur einen Teil des Fundaments. Die Länge dieses Lastanteils kann über die Koordinaten des Anfangs- und Endpunkts berechnet werden. Dieser Wert wird dann mit der Streckenlast pro Meter (10 kN/m) multipliziert. Auf diese Weise ergibt sich die Resultierende von 34,55 kN.

Die entsprechenden Angaben finden sich auch in den Nachweisdetails.

🖃 1. Linienlast	GL1,k	34.55	kN
 Linienlast pro Meter 	l1	10.00	kN/m
□ Linie schneidet Platte			
Beginn der Linienlast			
- x-Koordinate (bez. Auflagerk.)	x1 (L1)	150.00	cm
y-Koordinate (bez. Auflagerk.)	y 1 (L1)	150.00	cm
Ende der Linienlast			
 x-Koordinate (bez. Auflagerk.) 	x2 (L1)	-200.00	cm
y-Koordinate (bez. Auflagerk.)	y ₂ (L1)	-250.00	cm
Anfang des Linienlastanteils, der auf der Fundamentplatte lie	gt		
- x-Koordinate (bez. Plattenschwerp.)	x A(L1)	-65.00	cm
y-Koordinate (bez. Plattenschwerp.)	y A(L1)	-130.00	cm
Ende des Linienlastanteils, der auf der Fundamentplatte liegt	t .		
 x-Koordinate (bez. Plattenschwerp.) 	xe(L1)	162.50	cm
y-Koordinate (bez. Plattenschwerp.)	ye(L1)	130.00	cm
Schwerpunkt des auf der Fundamentplatte befindlichen Linie	enlastanteils		
 x-Koordinate (bez. Plattenschwerp.) 	xs(L1)	48.75	cm
v-Koordinate (hez. Plattenschwern.)	ve(1)	0.00	cm

Bild 8.39: Details – Ermittlung der Resultierenden einer zusätzlichen Gleichstreckenlast

In den Details werden die Lasten wie folgt zusammengefasst:

⊕ Charakteristischer Wert aus Fundamentplatteneigengewicht	G _{p,k}	77.22	kN
Charakteristischer Wert aus Köchereigengewicht	G cal,k	46.30	kN
Charakteristischer Wert aus Überschüttung	G _{cov,k}	143.33	kN
—	P N,k	17.00	kN
Charakteristischer Wert aus zusätzlichen Linienlasten	PL,k	34.55	kN

Bild 8.40: Details – Resultierende Belastungen in Bodenfuge aus ständig wirkenden Lasten

Nach diesen Vorberechnungen können die bodenmechanischen Nachweise geführt werden.

8.1.9.1 Nachweis der Sicherheit gegen Aufschwimmen

Es liegen keine abhebenden Stützennormalkräfte vor. Der Nachweis nach [2] 2.4.7.4 wird daher nicht geführt.

8.1.9.2 Nachweis der Sicherheit gegen Grundbruch

Für den Grundbruchnachweis gemäß [2] 6.5.2 ist die Lastkombination LK3 maßgebend. Die resultierende Vertikalkraft in der Bodenfuge ermittelt sich aus der Stützennormalkraft zusammen mit den bereits ermittelten ständigen Lasten zu:

 $V'_{d} = 929,83 \text{ kN}$

Das resultierende Moment in der Bodenfuge für die in x-Richtung verlaufende Bewehrung ermittelt sich aus den Lasten gemäß Bild 8.41.

$$\begin{split} \operatorname{res} \mathbf{M}_{\mathbf{x},\mathbf{d}} &= \mathbf{M}_{\mathbf{Y},\mathbf{d}} - \mathbf{P}_{\mathbf{X},\mathbf{d}} \cdot (\mathbf{d} + \mathbf{h}) - \sum \mathbf{P}_{\mathbf{N},\mathbf{d}} \cdot \mathbf{x}_{\mathbf{N}} - \sum \mathbf{P}_{\mathbf{L},\mathbf{d}} \cdot \mathbf{x}_{\mathbf{L}} - \\ &- \mathbf{e}_{\mathbf{x}} \cdot \left(\mathbf{P}_{\mathbf{Z},\mathbf{d}} + \mathbf{G}_{\mathsf{cal},\mathbf{d}} - \varDelta \mathbf{G}_{\mathsf{cov},\mathbf{d}} - \mathbf{R}_{\mathbf{p}} \right) = \\ &= -150,00 - 0,00 \cdot (0,36 + 1,31) - 17 \cdot 1,35 \cdot (-0,2) - 34,55 \cdot 1,35 \cdot 0,488 - \\ &- 0,30 \cdot (500 + 46,30 \cdot 1,35 - 28,272 \cdot 1,35) = \\ &= -325,45 \text{ kNm} \end{split}$$

Bild 8.41: Lasten und resultierendes Moment in Bodenfuge

Für die Bewehrung in y-Richtung errechnet sich das Moment in der Bodenfuge zu:

$$\begin{split} \mathrm{res}\, \mathrm{M}_{\mathrm{y},\mathrm{d}} &= \mathrm{M}_{\mathrm{Y}} + \mathrm{P}_{\mathrm{Y}\,,\mathrm{d}} \cdot (\mathrm{d} + \mathrm{h}) - \sum \mathrm{P}_{\mathrm{N}\,,\mathrm{d}} \cdot \mathrm{y}_{\mathrm{N}} - \sum \mathrm{P}_{\mathrm{L}\,,\mathrm{d}} \cdot \mathrm{y}_{\mathrm{L}} - \\ &- \mathrm{e}_{\mathrm{y}} \cdot \left(\mathrm{P}_{\mathrm{Z},\mathrm{d}} + \mathrm{G}_{\mathsf{cal},\mathrm{d}} - \varDelta \mathrm{G}_{\mathsf{cov},\mathrm{d}} - \mathrm{R}_{\mathrm{p}} \right) = \\ &= -150,00 + 17 \cdot 1,35 \cdot 0,5 + 34,55 \cdot 1,35 \cdot 0 = 161,48 \text{ kNm} \end{split}$$

Aus den beiden Momenten in der Bodenfuge kann die Exzentrizität der resultierenden Vertikalkraft in die jeweiligen Richtungen bestimmt werden.

$$\begin{split} e_x &= -\frac{\text{res } M_{x,d}}{V_d} = -\frac{-325,45}{929,83} = 35,0 \text{ cm} \\ e_y &= \frac{\text{res } M_{y,d}}{V_d} = \frac{161,48}{929,83} = 17,37 \text{ cm} \end{split}$$

Mit den Exzentrizitäten werden die effektiven Fundamentseitenlängen berechnet.

$$\begin{split} \mathsf{L}' &= \mathsf{x} - 2 \cdot |\mathsf{e}_{\mathsf{x}}| = 3, 3 - 2 \cdot |0, 35| = 2,60 \text{ m} \\ \mathsf{B}' &= \mathsf{y} - 2 \cdot |\mathsf{e}_{\mathsf{y}}| = 2,6 - 2 \cdot |0,174| = 2,252 \text{ m} \end{split}$$

Daraus ergibt sich eine effektive Fundamentfläche A_{eff} von:

$$A' = L' \cdot B' = 2,60 \cdot 2,253 = 5,857 \text{ m}^2$$

Nun lässt sich die vorhandene Bodenpressung bestimmen.

$$\sigma_{\rm vorh} = rac{{
m V}_{
m d}}{{
m A}'} = rac{929,83}{5,857} = 158,8\,{
m kN/m^2}$$

Bild 8.42: Vorhandene Bodenpressung

© DLUBAL SOFTWARE 2016

Der Nachweis der zulässigen Bodenpressung ist erfüllt:

$$\sigma_{\rm Rd} = \frac{\sigma_{\rm Rk}}{\gamma'_{\rm R,v}} = \frac{280}{1,4} = 200,0 \, \rm kN/m^2$$

 $\sigma_{\rm vorh} \leq \sigma_{\rm Rd}$

 $158,8 \ kN/m^2 \leq 200,0 \ kN/m^2$

Damit ergibt sich folgendes Nachweiskriterium:

Kriterium: $\frac{\sigma_{\mathrm{vorh}}}{\sigma_{\mathrm{Rd}}} = \frac{158,8}{200,0} = 0,794 < 1$

8.1.9.3 Nachweis der Sicherheit gegen stark exzentrische Belastung

Maßgebend für den Nachweis gemäß [2] 6.5.4 ist der Lastfall LF5. Die resultierende Vertikalkraft in der Bodenfuge ermittelt sich aus der Stützennormalkraft in Verbindung mit den bereits ermittelten ständigen Lasten zu:

res $V_k = 393,39 \text{ kN}$

Das resultierende Moment in der Bodenfuge für die in x-Richtung verlaufende Bewehrung ergibt sich somit aus folgender Belastung:

$$\begin{split} \mathrm{res}\, \mathrm{M_{x,k}} &= \mathrm{M_y} - \mathrm{P_x} \cdot (\mathrm{d} + \mathrm{h}) - \sum \mathrm{P_{N,k}} \cdot \mathrm{x_N} - \sum \mathrm{P_{L,k}} \cdot \mathrm{x_S} - \\ &- \mathrm{e_x} \cdot \left(\mathrm{P_Z} + \mathrm{G_{cal,k}} - \Delta \mathrm{G_{cov,k}} - \mathrm{R_p} \right) = \\ &= -235,00 - 17 \cdot (-0,2) - 34,55 \cdot 0,4\,875 - \\ &- 0,30 \cdot (75 + 46,30 - 28,27) = 193,65 \mathrm{~kNm} \end{split}$$

Für die Bewehrung in y-Richtung errechnet sich das Moment in der Bodenfuge zu:

$$\begin{split} \operatorname{res} \mathbf{M}_{\mathbf{y},\mathbf{k}} &= \mathbf{M}_{\mathbf{x}} + \mathbf{P}_{\mathbf{y}} \cdot (\mathbf{d} + \mathbf{h}) + \sum \mathbf{P}_{\mathbf{N},\mathbf{k}} \cdot \mathbf{y}_{\mathbf{N}} + \sum \mathbf{P}_{\mathbf{L},\mathbf{k}} \cdot \mathbf{y}_{\mathbf{S}} + \\ &+ \mathbf{e}_{\mathbf{y}} \cdot \left(\mathbf{P}_{\mathbf{Z}} + \mathbf{G}_{\mathsf{cal},\mathbf{k}} - \varDelta \mathbf{G}_{\mathsf{cov},\mathbf{k}} - \mathbf{R}_{\mathbf{p}} \right) = \\ &= 17 \cdot 0.5 = 8,50 \text{ kNm} \end{split}$$

Die Exzentrizitäten der resultierenden Vertikalkraft in die jeweiligen Richtungen sind:

$$\begin{aligned} \mathbf{e}_{x}' &= \frac{\operatorname{res} M_{x,k}}{\operatorname{res} V_{k}} = -\frac{193,65}{393,39} = 0,492 \text{ m} \\ \mathbf{e}_{y}' &= \frac{\operatorname{res} M_{y,k}}{\operatorname{res} V_{k}} = \frac{8,50}{393,39} = 0,022 \text{ m} \end{aligned}$$

Die maximale Ausmitte darf höchstens sein:

$$e_{zul} = \frac{1}{3} \cdot B = \frac{1}{3} \cdot 330 \text{ cm} = 110 \text{ cm}$$

Folgende Abbildung zeigt die Lage der resultierenden Vertikalkraft in der Bodenfuge:

Bild 8.43: Lage der Resultierenden

Der Nachweis der stark exzentrischen Belastungen ist somit erfüllt:

$$\mathsf{e}'_{\mathsf{x}} \leq \mathsf{e}_{\mathsf{zul}}$$

$$0,\!492 \leq 1,\!1$$

Damit ergibt sich folgendes Nachweiskriterium:

Kriterium: $\frac{e'_x}{e_{zul}} = \frac{0,492}{1,1} = 0,447$

8.1.9.4 Nachweis der Sicherheit gegen Gleiten

Maßgebend für den Gleitnachweis nach [2] 6.5.3 ist der Lastfall LF1. Die für den Nachweis bei unkonsolidierten Untergrundverhältnissen maßgebende Querkraft ist:

 $H_{x,d} = 50 \text{ kN}$

Die Sohlwiderstandskraft ermittelt sich wie folgt:

$$R_s = A' \cdot c_{u.d} = 5,51 \cdot 10 = 55,1 \text{ kN}$$

Damit ergibt sich folgendes Nachweiskriterium für die maßgebende x-Richtung:

Kriterium:
$$\frac{H_{x,d}}{R_{x,d}} = \frac{50,0}{\frac{55,1}{1.1}} = 0,998$$

8.1.9.5 Nachweis der Lagesicherheit

Maßgebend für den Nachweis der Lagesicherheit gemäß [2] 2.4.7.2 ist der Lastfall LF2.

Die resultierenden Momente an den vier Kanten der Bodenfuge ermitteln sich aus der Stützennormalkraft in Verbindung den bereits ermittelten ständigen Lasten. Dabei muss unterschieden werden, welche Wirkung von den Momenten ausgeht:

- Destabilisierende Wirkung
- Stabilisierende Wirkung

Destabilisierend wirkt im LF2 nur folgendes Moment an Kante 3:

 $M_{dst,3} = M_{y,d} = 327,00 \text{ kN}$

Die **stabilisierend** wirkenden Momente werden mit Teilsicherheitsbeiwerten abgemindert.

Moment aus RFEM bzw. RSTAB:

$$M_{x,RFEM/RSTAB,d} = P_{z,d} \cdot \left(\frac{x}{2} + e_x\right) = 100 \cdot (1,65 + 0,3) = 195,0 \text{ kN}$$

Moment aus Plattengewicht:

$$M_{x,p,d} = G_{p,k} \cdot \frac{x}{2} \cdot \gamma_{G,stb} = (3,3 \cdot 2,6 \cdot 0,36 \cdot 25) \cdot 1,65 \cdot 0,9 = 114,67 \text{ kN}$$

Moment aus Köchereigengewicht:

$$\begin{split} \mathsf{M}_{\mathsf{x},\mathsf{cal},\mathsf{d}} &= \left(\mathsf{G}_{\mathsf{cal},\mathsf{k}} \cdot (\mathsf{x}/2 + \mathsf{e}_{\mathsf{x}})\right) \cdot \gamma_{\mathsf{G},\mathsf{stb}} = (1, 14 \cdot 1, 24 \cdot 1, 31 \cdot 25 \cdot (1, 65 + 0, 3)) \cdot 0, 9 = 81, 25 \text{ kN} \\ \text{Moment aus Überschüttung:} \end{split}$$

 $M_{x,cov,d} = (x \cdot y \cdot \ddot{u} \cdot \gamma_{\ddot{u},k} \cdot x/2) - (d_{kx} \cdot d_{kz} \cdot \ddot{u} \cdot \gamma_{\ddot{u},k} \cdot (x/2 + e_x)) \cdot \gamma_{G,stb} =$

$$= ((3.3 \cdot 2.6 \cdot 1 \cdot 20 \cdot 1.65) - (1.14 \cdot 1.24 \cdot 1 \cdot 20 \cdot (1.65 + 0.3))) \cdot 0.9 = 205.21 \text{ kN}$$

Bemessungswert des Moments aus zusätzlichen Einzellasten:

$$M_{x,N,d} = \left(G_{Z,1} \cdot (x/2 + (x_{N1} + e_x))\right) \cdot \gamma_{G,stb} = (17 \cdot (1,65 + (-0,5 + 0,3))) \cdot 0,9 = 22,185 \text{ kN}$$

Bemessungswert des Moments aus zusätzlichen Linienlasten:

Stabilisierend wirkendes Moment an der Kante 3:

$$M_{\mathsf{stb},3} = M_{x,\mathsf{RFEM/RSTAB},d} + M_{x,p,d} + M_{x,\mathsf{cal},d} + M_{x,\mathsf{cov},d} + M_{x,N,d} + M_{x,L,d} =$$

$$= 195,0 + 114,67 + 81,25 + 205,21 + 22,185 + 66,46 =$$

= 684,78 kNm

Damit ergibt sich folgendes Nachweiskriterium:

Kriterium:
$$\frac{M_{dst,3}}{M_{stb,3}} = \frac{327,0}{684,78} = 0,478$$

8.1.10 Nachweis der inneren Standsicherheit

8.1.10.1 Biegebruchsicherheit der Fundamentplatte

Die Fundamentplatte besitzt eine obere und eine untere Bewehrung – für jede Richtung. Daher sind vier verschiedene Biegebruchsicherheiten nachzuweisen.

Biegebruchsicherheit aus unterer Bewehrung in x-Richtung

Zunächst müssen aus der maßgebenden Bodenpressung die Bemessungsmomente zur Biegebemessung der Fundamentplatte ermittelt werden. Für die untere Bewehrung in x-Richtung ist der Lastfall LF1 maßgebend.

Die resultierende Vertikalkraft in der Bodenfuge ermittelt sich aus der Stützennormalkraft in Verbindung mit den bereits ermittelten ständigen Lasten zu:

res
$$V_{max} = 729,83 \text{ kN}$$

Das resultierende Moment in der Bodenfuge für die in x-Richtung verlaufende Bewehrung ergibt sich somit aus folgender Belastung:

$$\begin{split} &\operatorname{res} M_{x,d} = M_y - P_x \cdot (d+h) - \sum P_{N,d} \cdot x_N - \sum P_L \cdot x_S - \\ &- e_x \cdot \left(P_Z + G_{\mathsf{cal},d} - \varDelta G_{\mathsf{cov},d} - R_p \right) = \\ &= 250,00 - (-50,00) \cdot (0,36+1,31) - 17 \cdot 1,35 \cdot (-0,2) - 34,55 \cdot 1,35 \cdot 0,4\,875 - \\ &- 0,30 \cdot (300 + 46,30 \cdot 1,35 - 28,27 \cdot 1,35) = 218,05 \,\mathrm{kNm} \end{split}$$

Für die Bewehrung in y-Richtung errechnet sich das Moment in der Bodenfuge zu:

$$\begin{split} \mathrm{res}\, \mathrm{M}_{\mathrm{y},\mathrm{d}} &= \mathrm{M}_{\mathrm{x}} + \mathrm{P}_{\mathrm{y}} \cdot (\mathrm{d} + \mathrm{h}) + \sum \mathrm{P}_{\mathrm{N},\mathrm{d}} \cdot \mathrm{y}_{\mathrm{N}} + \sum \mathrm{P}_{\mathrm{L}} \cdot \mathrm{y}_{\mathrm{S}} + \\ &+ \mathrm{e}_{\mathrm{y}} \cdot \left(\mathrm{P}_{\mathrm{Z}} + \mathrm{G}_{\mathsf{cal},\mathrm{d}} - \varDelta \mathrm{G}_{\mathsf{cov},\mathrm{d}} - \mathrm{R}_{\mathrm{p}} \right) = \\ &= 100 + 20,00 \cdot (0,36 + 1,31) + 17 \cdot 1,35 \cdot 0,5 = 144,88 \text{ kNm} \end{split}$$

Die Exzentrizitäten der resultierenden Vertikalkraft in die jeweiligen Richtungen sind:

$$e_{x} = -\frac{\operatorname{res} M_{x,d}}{\operatorname{res} V_{max}} = -\frac{218,05}{729,83} = -29,88 \text{ cm}$$
$$e_{y} = \frac{\operatorname{res} M_{y,d}}{\operatorname{res} V_{max}} = \frac{144,88}{729,83} = 19,85 \text{ cm}$$

Iterativ ergibt sich folgende Druckspannungsverteilung. Größe und Lage der Resultierenden entsprechen der resultierenden Vertikalkraft in der Bodenfuge.

Bild 8.44: Druckspannungsverteilung

 Druckspannungsverteilung 			
Spannungsverteilungsfall gemäß Handbuch	Fall	Fall 1	
Druckspannung unter Druckpunkt DI	DI	0.0	kPa
Druckspannung unter Druckpunkt DII	DII	77.8	kPa
 Druckspannung unter Druckpunkt DIII 	DIII	170.2	kPa
 Druckspannung unter Druckpunkt DIV 	DIV	92.3	kPa
Druckspannung unter Fundamentplattenmitte	D0	85.1	kPa
🕞 Verlauf der klaffenden Fuge			
x-Koordinate Anfangspunkt	XK1	164.60	cm
y-Koordinate Anfangspunkt	УК1	-130.00	cm
 x-Koordinate Anfangspunkt 	XK2	165.00	cm
y-Koordinate Anfangspunkt	УК2	-129.63	cm

Bild 8.45: Tabellarische Ausgabe der Druckspannungsverteilung

Nun wird das Volumen des Teildruckspannungskörpers und dessen Schwerpunktabstand vom benutzerdefinierten Bemessungsschnitt ermittelt. Das Produkt der beiden Werte liefert das Moment infolge der Druckspannung.

Das folgende Bild zeigt den Bemessungsschnitt mit Pfeilen, die in die Richtung des Teildruckspannungskörpers zeigen, mit dem das Moment infolge Druckspannung ermittelt wurde.

Aus dem Druckspannungskörper ergibt sich das Moment $M_{D,x,plus} = 121,90$ kNm in positive x-Richtung.

Bild 8.46: Moment aus Druckspannungskörper in positive x-Richtung

Bild 8.47 zeigt den Bemessungsschnitt für das Moment aus Druckspannung in negative x-Richtung. Dieser liefert das Moment $M_{D,x,minus} = 558,74$ kNm.

Bild 8.47: Moment aus Druckspannungskörper in negative x-Richtung

Der Bemessungsschnitt wurde im Dialog *Details* entsprechend der Vorgabe auf Seite 81 in die **Stützenmitte** gelegt.

Von den beiden Momenten aus Druckspannung ist noch jener Anteil abzuziehen, der keine Biegung der Platte verursacht. Er setzt sich zusammen aus dem Eigengewicht der Fundamentplatte und der Überschüttung (siehe folgende Bilder).

Für Bild 8.48 beträgt der Abstand vom Bemessungsschnitt bis Plattenrand in positive x-Richtung 1,35 m. Somit errechnet sich das Moment aus Eigengewicht und Überschüttung zu:

$$\mathsf{M}_{\mathsf{G},\mathsf{x},\mathsf{plus}} = \frac{1,35^2}{2} \cdot 2, \mathbf{6} \cdot \gamma_{\mathsf{G}} \cdot (\mathsf{d} \cdot \gamma_{\mathsf{Beton}} + \ddot{\mathsf{u}} \cdot \gamma_{\ddot{\mathsf{u}}}) = \frac{1,35^2}{2} \cdot 2, \mathbf{6} \cdot 1,35 \cdot (0,36 \cdot 25 + 1 \cdot 20) = 92,76 \mathsf{kNm}$$

Bild 8.48: Moment aus Gleichflächenbelastung in positive x-Richtung

Für Bild 8.49 beträgt der Abstand vom Bemessungsschnitt bis zum negativen Plattenrand in x-Richtung 1,95 m. Das Eigengewicht und Überschüttung errechnet sich somit zu:

$$\mathsf{M}_{\mathsf{G},\mathsf{x},\mathsf{minus}} = \frac{1,95^2}{2} \cdot 2, \mathbf{6} \cdot \gamma_{\mathsf{G}} \cdot (\mathsf{d} \cdot \gamma_{\mathsf{Beton}} + \ddot{\mathsf{u}} \cdot \gamma_{\ddot{\mathsf{u}}}) = \frac{1,95^2}{2} \cdot 2, \mathbf{6} \cdot 1, 35 \cdot (0, 36 \cdot 25 + 1 \cdot 20) = 193,53 \mathsf{kNm}$$

Bild 8.49: Moment aus Gleichflächenbelastung in negative x-Richtung
8 Beispiele

Somit liegen folgende Bemessungsmomente in die jeweiligen Schnittrichtungen vor:

$$\begin{split} M_{unten,x,plus} &= M_{D,x,plus} + M_{G,x,plus} = 121,90 - 92,76 = 29,14 \text{ kNm} \\ M_{unten,x,minus} &= M_{D,x,minus} + M_{G,x,minus} = 558,74 - 193,53 = 365,21 \text{ kNm} \end{split}$$

In diese Richtung erhält die Platte an der Unterseite Zug. Somit ist eine untere Biegebewehrung erforderlich. Maßgebend für die Bemessung einer unteren Biegebewehrung ist das Bemessungsmoment in positive x-Richtung:

$$M_{x,u} = M_{unten,x,minus} = 365,21 \text{ kNm}$$

Die Fundamentplatte wird nun in acht gleich breite Streifen in x-Richtung unterteilt. Über folgenden Quotienten wird ermittelt, wie groß der Anteil am Bemessungsmoment ist, den jeder Plattenstreifen erhält.

$$\mathbf{Q_x} = \frac{\mathbf{c_x} + 2 \cdot (\mathbf{a_{ox}} + \mathbf{t_{ox}})}{\mathbf{x}} = \frac{0.40 + 2 \cdot (0.10 + 0.27)}{3.3} = 0.35$$

Da der Quotient größer als 0,3 ist, wird das Bemessungsmoment gleichmäßig auf alle acht Plattenstreifen verteilt. Die Verteilungszahl α ist somit 0,125.

Das anteilige Bemessungsmoment für den Plattenstreifen Nr. 4 ist:

 $M_{Ed,x,4} = \alpha \cdot M_{x,u} = 0,125 \cdot 365,21 = 45,65 \text{ kNm}$

Für die Ermittlung des aufnehmbaren Moments M_{Rd} benutzt RF-/FUND Pro folgende Parameter:

→ Bemessungswert des einwirkenden Biegemoments	MEd,x,4	45.65	kNm
- Bemessungswert des aufnehmbaren Moments	MRd,x,4	49.87	kNm
 Statische Nutzh öhe 	d 4	0.273	m
Abstand des Bewehrungsschwerpunkts vom unteren Plattenrand	abz,4	0.087	m
 Abstand des Bewehrungsschwerpunkts vom unteren Bewehrungsrand 	ab Schw,4	0.017	m
Nennwert der unteren Betondeckung	nom cu	0.070	m
— Gewählte Festigkeitsklasse		Beton C	
Bemessungswert des Betons	fod	19833.3	kPa
Beiwert zur Berücksichtigung der Langzeitwirkung	α _{cc}	0.850	
 Charakteristische Zylinderfestigkeit 	fck	35000.0	kPa
Teilsicherheitsbeiwert des Betons	γe	1.500	
 Rechnerische Bruchdehnung des Betons 	8cu	3.500	‰
Betondehnung	εc,4	3.500	‰
Höhe der Druckzone	X4	0.040	m
Breite des Fundamentplattenstreifens	y Streif	0.412	m
Bemessungswert der Betondruckkraft	Fcd,4	193.50	kN
 Charakteristischer Wert der Streckgrenze des Betonstahls 	fyk	500000.	kPa
 Charakteristischer Wert der Zugfestigkeit des Betonstahl f ür die Bemessu 	f tk,cal	525000.	kPa
Teilsicherheitsbeiwert für Betonstahl	γs	1.150	
 Elastizitätsmodul des Betonstahls 	Es	2.00000	kPa
 Vorhandene Stahldehnung 	٤s	20.401	‰
 Vorhandene Stahlspannung 	σs,4	452142.	kPa
Hebelarm der inneren Kräfte	Z 4	0.258	m
Hauptbewehrungsrichtung der unteren Bewehrung	Hauptbew.	Х	

Bild 8.50: Details – Parameter für Ermittlung des aufnehmbaren Moments

Aus der erforderlichen Stahlzugkraft und der vorhandenen Stahlspannung beim gegebenen Dehnungszustand ermittelt sich der erforderliche Stahlbedarf dieses Plattenstreifens.

erf
$$A_{X,4} = \frac{F_{sd}}{\sigma_s} = \frac{193,50}{45,214} = 4,280 \text{ cm}^2$$

Die Stahlmenge wird nun auf einen Meter Einheitslänge bezogen.

erf
$$a_{X,4} = \frac{\text{erf } A_{X,4}}{y_{\text{Streif}}} = \frac{4,280}{0,325} = 13,17 \text{ cm}^2/\text{m}$$

Diese erforderliche Bewehrung kann am wirtschaftlichsten mit Stäben \emptyset 10 mm im Abstand von 80 mm und der Mattenbewehrung Q 335A abgedeckt werden.

8

🛱 Details zur gewählten Bewehrung			
Erforderliche Bewehrung pro Meter	erfa _{x,1} (prom	13.161	cm ² /m
Vorhandene Bewehrung pro Meter	vorh a _{x,I} (pro	13.167	cm ² /m
Gewählte Breite des Bewehrungsbereiches I	yı (gewählt)	2.600	m
Angesetzte Breite des Bewehrungsbereiches I	yı (angesetzt)	2.240	m
Gewählte Grundmatte	Bezeichnung	Q 335A	
Vorhandene Bewehrung aus Matte	vorh a _{x,Matte}	3.350	cm ² /m
Gewählter Bewehrungsstab	ds	10	mm
Abstand der Bewehrungsstäbe	S	80	mm
Bewehrungsfläche aus Bewehrungsstäben	vorh a (Stab)	9.817	cm ² /m

Bild 8.51: Details – Bewehrungsangaben für unteren Bereich in x-Richtung

In Maske 2.4 wird manuell die Bewehrung auf Stäbe Ø16 mm mit 200 mm Abstand geändert:

🗇 Details zur gewählten Bewehrung			
Erforderliche Bewehrung pro Meter	erfa _{x,I} (prom	13.161	cm ² /m
Vorhandene Bewehrung pro Meter	vorh a _{x,1} (pro	13.403	cm ² /m
Gewählte Breite des Bewehrungsbereiches I	yı (gewählt)	2.600	m
Angesetzte Breite des Bewehrungsbereiches I	yı (angesetzt)	2.400	m
Gewählte Grundmatte	Bezeichnung	Q 335A	
Vorhandene Bewehrung aus Matte	vorh a _{x,Matte}	3.350	cm ² /m
Gewählter Bewehrungsstab	ds	16	mm
Abstand der Bewehrungsstäbe	S	200	mm
Bewehrungsfläche aus Bewehrungsstäben	vorh a (Stab)	10.053	cm ² /m

Bild 8.52: Details – Geänderte Bewehrungsangaben für unteren Bereich in x-Richtung

Das Rendering stellt diese zusätzlich zur Matte Q 335A eingelegten Bewehrungsstäbe in x- und y-Richtung wie folgt dar:

Bild 8.53: Rendering der unteren Bewehrung

Riegebruchsicherheit Diette	(EC 2_6 1) Knoten 1 E1
Dieuebruchsicherneit Flatte	

Bemessungswert des aufnehmbaren Moments	MRd,x,4	50.19	kNm	-
Bemessungswert der Betondruckkraft	Fod,4	196.71	kN	
Bemessungswert des Betons	fod	19833.3	kN/m ²	
 Charakteristische Zylinderdruckfestigkeit 	fck	35000.0	kN/m ²	
Beiwert zur Berücksichtigung der Langzeitwirkung	0.cc	0.850		
Teilsicherheitsbeiwert des Betons	γe	1.500		
- Höhe der Druckzone	X4	0.041	m	
- Betondehnung	Sc,4	3.500	‰	
Bruchdehnung des Betons unter Druck	8 _{CU}	3.500	‰	
Breite des Fundamentplattenstreifens	y strip	0.325	m	
→ Bemessungswert der Bewehrungszugkraft	Fsd,4	196.71	kN	
Hebelarm der inneren Kräfte	Z 4	0.255	m	
- ☐ Statische Höhe	d 4	0.271	m	
Abstand des Bewehrungsschwerpunkts vom Plattenrand - Unten	abz,4	0.089	m	Ξ
Abstand des Bewehrungsschwerpunkts vom Bewehrungsrand - Unt	ab Schw,4	0.019	m	
 Nennwert der Betondeckung - Unten 	nom cu	0.070	m	
Hauptbewehrungsrichtung der Unten Bewehrung	Hauptbew.	Х		
Vorhandene Biegebruchsicherheit	γx,4	1.100		
🖂 Nachweis				
Maßgebende Biegebruchsicherheit	γx,4	1.100		
Erforderliche Biegebruchsicherheit	erf γ	1.00		1
Nachweiskriterium	Kriterium	0.909		Ŧ

Bild 8.54: Details – Parameter für Ermittlung des aufnehmbaren Moments

Mit der geänderten Bewehrung ergibt sich eine vorhandene Biegebruchsicherheit von:

vorh
$$\gamma_{x,4} = \frac{M_{Rd,x,4}}{M_{Ed,x,4}} = \frac{50,19}{45,65} = 1,10$$

Damit ergibt sich als Nachweiskriterium für den Nachweis der Biegebruchsicherheit der Platte für die untere Bewehrung in x-Richtung:

Kriterium: $\frac{\text{erf } \gamma}{\text{vorh } \gamma_{\text{x},4}} = \frac{1,0}{1,10} = 0,909$

Biegebruchsicherheit aus unterer Bewehrung in y-Richtung

Die Rechenschritte sind die gleichen wie beim Nachweis der Biegebruchsicherheit aus unterer Bewehrung in x-Richtung.

Im wirtschaftlichsten Bewehrungsvorschlag werden neben der Matte Q 335A Stäbe Ø12 mm im Abstand von 220 mm ermittelt. Dieser Bewehrungsabstand wird in Maske 2.4 auf 200 mm geändert. Damit ergibt sich folgender Nachweis:

🗇 Untere Bewehrung in y-Richtung	Kriterium	0.809	
Bemessungswert aus Auflagerkräfte und -momente			
Bemessungsmoment in y-Richtung	M _{y,u}	273.76	kNm
Biegebruchsicherheit Bemessungsstreifen	Kriterium	0.809	
Bemessungswert des einwirkenden Biegemoments	MEd.y.4	34.22	kNm
Bemessungswert des aufnehmbaren Moments	MRd.y.4	42.28	kNm
Vorhandene Biegebruchsicherheit	γy.4	1.236	
Erforderliche Biegebruchsicherheit	erf γ	1.000	
Nachweis			
Maßgebende Biegebruchsicherheit	γy.4	1.236	
Erforderliche Biegebruchsicherheit	erf γ	1.00	
Nachweiskriterium	Kriterium	0.809	

Bild 8.55: Details – Biegebruchsicherheit aus unterer Bewehrung in y-Richtung

Biegebruchsicherheit aus oberer Bewehrung in x-Richtung

Die Bemessung erfolgt wie bereits beschrieben. Eine Besonderheit jedoch stellt die Ermittlung des Bemessungsmoments dar. Im maßgebenden Lastfall LF2 bildet sich folgender Druckspannungskörper aus maximalem Moment unter der Platte aus:

Bild 8.56: Druckspannungsverteilung

Das Moment aus dem Druckspannungskörperteil in positive x-Richtung ist $M_{D,x,plus} = 35,48$ kNm, das Moment aus der Gleichflächenbelastung in positive x-Richtung ist $M_{G,x,plus} = -92,76$ kNm.

Ferner ist die Resultierende der über die Platte verlaufenden zusätzlichen Einzel- bzw. Linienlasten zu berücksichtigen. Sie liegt jenseits des Bemessungsschnitts in positiver x-Richtung.

Bild 8.57: Zusätzliche Gleichstreckenlasten

Aus zusätzlicher Last ergibt sich so ein oberes Biegemoment von $M_{Z,x,plus} = -7,98$ kNm.

Das Bemessungsmoment für die obere Bewehrung in x-Richtung ermittelt sich aus der Summe dieser Momente:

 $M_{x,o} = M_{D,x,plus} + M_{G,x,plus} + M_{Z,x,plus} = 35,48 - 92,76 - 7,98 = -65,26 \text{ kNm}$

Das Bemessungsmoment wird für die obere Bewehrung gleichmäßig auf die acht Bemessungsstreifen verteilt. Damit ergibt sich folgende Bewehrung:

🛱 Bemessungsstreifen			
Bemessungswert des einwirkenden Biegemoments	M _{Ed,x}	-8.16	kNm
 Bemessungsmoment in x-Richtung 	M _{x,o}	-65.26	kNm
Verteilungszahl	αγ	0.125	
→ Bemessungswert des aufnehmbaren Moments	M _{Rd,x}	-8.17	kNm
Nachweis			
	erf A _x	0.705	cm ²
	vorh A _x	0.835	cm ²
Nachweiskriterium	Kriterium	0.843	
🖵 Details zur gewählten Bewehrung			
Erforderliche Bewehrung pro Meter	erfa _x (prom)	2.168	cm ² /m
Vorhandene Bewehrung pro Meter	vorh a _x (pro r	2.570	cm ² /m
Gewählte Breite des Bewehrungsbereiches	yı (gewählt)	2.600	m
Angesetzte Breite des Bewehrungsbereiches	yı (angesetzt)	2.500	m
Gewählte Grundmatte	Bezeichnung	Q 257A	
Vorhandene Bewehrung aus Matte	vorh a _{x,Matte}	2.570	cm ² /m
- Gewählter Bewehrungsstab	ds	0	mm
 Abstand der Bewehrungsstäbe 	S	0	mm
Bewehrungsfläche aus Bewehrungsstäben	vorh a (Stab)	0.000	cm ² /m

Bild 8.58: Details – Obere Bewehrung in x-Richtung

8 Beispiele

Mit dieser Bewehrung wird der Nachweis der Biegebruchsicherheit geführt.

Biegebruchsicherheit Bemessungsstreifen

→ Bemessungswert des einwirkenden Biegemoments	M _{Ed,x}	-8.16	kNm
—	M Rd,x	-10.66	kNm
Vorhandene Biegebruchsicherheit	γx	1.307	
Erforderliche Biegebruchsicherheit	erf γ	1.000	
□ Nachweis			
 Vorhandene Biegebruchsicherheit 	vorh γ	1.307	
Erforderliche Biegebruchsicherheit	erf γ	1.00	
Nachweiskriterium	Kriterium	0.765	

Bild 8.59: Details – Biegebruchsicherheit aus oberer Bewehrung in x-Richtung

Biegebruchsicherheit aus oberer Bewehrung in y-Richtung

Die Ermittlung der Biegebruchsicherheit in y-Richtung erfolgt analog. Da jedoch kein Biegemoment vorliegt, ist keine Bewehrung erforderlich.

8.1.10.2 Durchstanzsicherheit der Fundamentplatte

Für den Durchstanznachweis gemäß [1] 6.4 ist zunächst die schubkraftübertragende Fläche zu ermitteln.

Bei der Ermittlung der Mindestabmessungen des Fundaments wurde der voraussichtliche Abstand vom Köcherrand zum Rundschnitt mit $I_{w,def} = 1,0 \cdot d = 26$ cm benutzerdefiniert festgelegt. Zudem wurde die iterative Berechnung des kritischen Rundschnitts vorgegeben. Der Faktor für die Berücksichtigung der entlastend wirkenden Bodenpressungen innerhalb des Rundschnittes wird mit $k_{red} = 1,00$ angegeben. Dies bedeutet, dass 100% der Bodenpressungen innerhalb des Rundschnitts bei der Ermittlung der resultierenden einwirkenden Querkraft V_{Ed,red} als günstig wirkend berücksichtigt wurden.

Alle drei Lastfälle führen zu ähnlichen Nachweiskriterien. Dabei sind zwei verschiedene Arten von Nachweisen von Bedeutung:

- Beidseitige Randstütze: Schubnachweis für LF2
- Innenliegende Stütze: Durchstanznachweis für LF1 und LF3

Um die Ergebnisse in den Ergebnistabellen des Moduls für die unterschiedlichen Arten des Nachweises getrennt untersuchen zu können, kann der im Kapitel 4.2 genannte *Ergebnisfilter* genutzt werden. Wird z. B. LF2 ausgewählt, wird der Nachweis als *beidseitige Randstütze* ausgegeben, auch wenn das Nachweiskriterium für diesen Nachweis nicht maßgebend ist.

Beidseitige Randstütze: Schubnachweis für LF2

Iterative Berechnung: kritischer Rundschnitt

Im Zuge der iterativen Berechnung wird der Abstand vom Stützenrand zum Rundschnitt mit $I_{w,crit} = 68,40$ cm bestimmt.

Der Rundschnitt befindet sich beidseits außerhalb des Fundamentrandes in y-Richtung. Daher wird der Nachweis als Schubnachweis geführt.

Bild 8.60: Kritischer Rundschnitt für beidseitige Randstütze – Schubnachweis

Die zu übertragende Querkraft V_{Ed} wird als Differenz zwischen der Querkraft aus Druckspannung und Querkraft aus Gleichflächenlast berechnet.

Bild 8.61: Druckspannungskörper und die Lage des Bemessungsschnitts

Die zu übertragende Querkraft in negative x-Richtung ist:

$$V_{Ed,x,n} = V_{D,x,n} - V_{G,x,n} = 432,43 - 274,16 = 158,27 \text{ kN}$$

Für die zulässige Schubspannung muss zunächst die mittlere Flächenbewehrung der unteren Plattenbewehrung aus beiden Richtungen bestimmt werden. Der Längsbewehrungsgrad errechnet sich zu:

$$\rho_{\rm l} = \frac{\rm A_{sl}}{\rm d \cdot b_w} = \frac{34,848 \, \rm cm^2}{26 \, \rm cm \cdot 260 \, \rm cm} = 0,515 \, \%$$

Der Längsbewehrungsgrad wurde mit der im vorherigen Abschnitt definierten Bewehrung von Q355 + Ø16-20 für die untere Bewehrung in x-Richtung berechnet. Dieser Längsbewehrungsgrad muss geringer als 2 % sein.

Der Sicherheitsfaktor C_{Rd,c} errechnet sich wie folgt:

$$C_{Rd,c} = rac{0,18}{\gamma_c} = rac{0,18}{1,5} = 0,12$$

Der Maßstabsfaktor der statischen Nutzhöhe ist:

$$k = 1 + \sqrt{\frac{200}{d}} = 1 + \sqrt{\frac{200}{260}} = 1,877$$

Für den Bemessungswert der Querkrafttragfähigkeit gilt:

$$\begin{split} V_{Rd,c} &= \left(\mathsf{C}_{Rd,c} \cdot \mathbf{k} \cdot (100 \cdot \rho_{\mathsf{I}} \cdot \mathbf{f}_{ck})^{\frac{1}{3}} + \mathbf{k}_{1} \cdot \sigma_{cd} \right) \cdot \mathbf{b}_{\mathsf{w}} \cdot \mathsf{d} \geq \mathsf{V}_{Rd,c,\mathsf{min}} \\ V_{Rd,c} &= \left(0,12 \cdot 1,877 \cdot (100 \cdot 0,0\,052 \cdot 35)^{\frac{1}{3}} + 0,15 \cdot 0 \right) \cdot 2,6 \cdot 0,26 = 0,3\,994 \,\,\mathsf{MN} \end{split}$$

[1] gibt eine Mindestquerkrafttragfähigkeit v_{min} vor, die bei kleinen Bewehrungsgraden in Verbindung mit sehr hohen Betonfestigkeiten zu größeren Tragfähigkeiten führen kann.

Sie ermittelt sich wie folgt:

$$\begin{split} \mathbf{v}_{min} &= 0,035 \cdot k^{\frac{3}{2}} \cdot \mathbf{f}_{ck}^{\frac{1}{2}} = 0,035 \cdot 1,877^{\frac{3}{2}} \cdot 35^{\frac{1}{2}} = 0,5\,325\,\text{MPa} \\ \mathbf{V}_{\text{Rd.c.min}} &= \left(\mathbf{v}_{min} + \mathbf{k}_{1} \cdot \sigma_{cp}\right) \cdot \mathbf{b}_{w} \cdot \mathbf{d} = (532,5 + 0,15 \cdot 0) \cdot 2,6 \cdot 0,26 = 359,97\,\text{kN} \end{split}$$

Der Bemessungswert der Querkrafttragfähigkeit ist somit größer als die Mindesttragfähigkeit:

$$V_{Rd,c} = 399,4 \text{ kN} > V_{Rd,c,min} = 359,97 \text{ kN}$$

Damit ist das Kriterium für den Schubnachweis aus maximaler Vertikalkraft erfüllt:

Kriterium:
$$\frac{V_{Ed,x,p}}{V_{Rd,c}} = \frac{158,27}{399,4} = 0,396 \le 1$$

© DLUBAL SOFTWARE 2016

Innenliegende Stütze: Durchstanznachweis für LF1

Im Zuge der iterativen Berechnung wird der Abstand vom Stützenrand zum Rundschnitt mit $I_{w,crit} = 49,0$ cm ermittelt. Daher wird der Nachweis als Durchstanznachweis geführt.

Bild 8.62: Kritischer Rundschnitt für innenliegende Stütze – Durchstanznachweis

Da bei einem Köcherfundament mit rauen Köcherinnenseiten der ganze Köcher wirksam ist, sind die Köcheraußenabmessungen für den Umfang des maßgebenden Rundschnitts relevant:

 $\mathbf{u_{it}} = \mathbf{2} \cdot \left(\mathbf{d_{kx}} + \mathbf{d_{ky}}\right) + \mathbf{2} \cdot \pi \cdot \mathbf{I_{w,crit}} = \mathbf{2} \cdot (1,14+1,24) + \mathbf{2} \cdot 3,1\,416 \cdot 0,49 = 7,839\,\mathrm{m}$

Beiwert β :

$$\beta = 1 + \sqrt{\left(k_x \frac{M_{\text{Ed},x,\text{sl}}}{V_{\text{Ed}}} \cdot \frac{u_{\text{it}}}{W_{1,x}}\right)^2 + \left(k_y \frac{M_{\text{Ed},y,\text{sl}}}{V_{\text{Ed}}} \cdot \frac{u_{\text{it}}}{W_{1,y}}\right)^2} = 1 + \sqrt{\left(0.576 \frac{218.05}{226.06} \cdot \frac{7.839}{5.994}\right)^2 + \left(0.609 \frac{144.88}{226.06} \cdot \frac{7.839}{6.169}\right)^2} = 1.879$$

Die zu übertragende Querkraft aus maximaler Vertikalkraft errechnet sich zu:

$$V_{Ed} = \beta \cdot \frac{V_{Ed}}{u_i \cdot d} = 1,879 \cdot \frac{226,06}{7,839 \cdot 0,245} = 221,2 \text{ kPa}$$

Als mittlerer Längsbewehrungsgrad wird angesetzt:

$$\rho_{\rm L} = \sqrt{\rho_{\rm x} \cdot \rho_{\rm y}} = \sqrt{0.516 \cdot 0.392} = 0.450$$

Der Maßstabsfaktor der statischen Nutzhöhe ist:

$$k = 1 + \sqrt{\frac{200}{d}} = 1 + \sqrt{\frac{200}{245}} = 1,904$$

Der Durchstanzwiderstand ohne Durchstanzbewehrung wird wie folgt berechnet:

- Grunddurchstanzwiderstand nach [1] Gl. (6.50):

$$\begin{split} \mathbf{v}_{\mathsf{Rd},\mathsf{c},\mathsf{calc},1} &= \mathbf{C}_{\mathsf{Rd},\mathsf{c}} \cdot \mathbf{k} \cdot (100 \cdot \rho_{\mathrm{l}} \cdot \mathbf{f}_{\mathrm{ck}})^{\frac{1}{3}} \cdot \frac{2 \cdot \mathbf{d}}{\mathbf{l}_{\mathrm{w},\mathsf{crit}}} = \\ &= 0,\!120 \cdot 1,\!904 \cdot (100 \cdot 0,\!00\,449 \cdot 35)^{\frac{1}{3}} \cdot \frac{2 \cdot 0,\!245}{0.490} = 572,\!3\,\mathrm{kPa} \end{split}$$

- Mindestdurchstanzwiderstand nach Gl. (6.50):

$$v_{Rd,c,calc,2} = v_{min} \cdot \frac{2 \cdot d}{l_{w,crit}} = 0,5\,438 \cdot \frac{2 \cdot 0,245}{0,49} = 543,8 \text{ kPa}$$

mit

$$v_{min} = 0,035 \cdot k^{\frac{3}{2}} \cdot f_{ck}^{\frac{1}{2}} = 0,035 \cdot 1,904^{\frac{3}{2}} \cdot 35^{\frac{1}{2}} = 0,5\,438 \text{ MPa}$$

Der Durchstanzwiderstand ist somit:

$$v_{Rd,c} = MAX (v_{Rd,c,calc,1}; v_{Rd,c,calc,2}) = MAX (572,3; 543,8) = 572,3 kPa$$

Damit ist der Nachweis der Sicherheit gegen Durchstanzen erbracht.

Kriterium:
$$\frac{v_{Ed}}{v_{Rd,c}} = \frac{221,2}{572,3} = 0,387 \le 1$$

© DLUBAL SOFTWARE 2016

8.2 Blockfundament

Es wird ein Blockfundament mit rauen Köcherinnenseiten nachgewiesen. Die Belastung und die geotechnische Lage ist die gleiche wie beim Köcherfundament im vorherigen Beispiel (siehe Kapitel 8.1 ab Seite 80).

In diesem Beispiel wird auf die Lastermittlung und die geotechnischen Nachweise verzichtet. Es wird vorgestellt, wie RF-/FUND Pro die Köcherbewehrung des Blockfundaments berechnet.

8.2.1 Fundamentabmessungen

Die Maske 2.1 Geometrie verwaltet die Abmessungen von Stütze, Fundamentplatte und Köcher.

2.1 Geometrie				
Bezeichnung	Symbol	Wert	Einheit	Meldung
🖂 Stütze				
Abmessung in x-Richtung	Cx	0.400	m	
Abmessung in y-Richtung	су	0.300	m	
Exzentrizität				
 Exzentrizität in x-Richtung 	ex	-0.300	m	
Exzentrizität in y-Richtung	ey	0.000	m	
E Fundamentplatte				
 Abmessung in x-Richtung 	x	2.950	m	
 Abmessung in y-Richtung 	У	2.700	m	
Plattendicke	d	0.840	m	
🖾 Köcher				
 Köcherhöhe 	h	0.600	m	
Einbindetiefe Stütze	t	0.600	m	
Abmessung in x-Richtung				
 Oberes Stützenspiel 	aox	0.100	m	
Unteres Stützenspiel	aux	0.050	m	
Innenwandneigung	αχ	85.24	•	
Abmessung in y-Richtung				
Oberes Stützenspiel	aoy	0.100	m	
Unteres Stützenspiel	auy	0.050	m	m
Innenwandneigung	αγ	85.24	•	
🖾 Überschüttung				
 Höhe der Überschüttung 	ü	1.000	m	

Bild 8.63: Abmessungen des Blockfundaments

8.2.2 Bewehrung im Blockfundament

8.2.2.1 Vertikale Bewehrung in x-Richtung

Zunächst werden Anzahl und Durchmesser der vertikalen Bewehrungsstäbe bestimmt, die in x-Richtung verlaufen. Maßgebend für die Bemessung sind die Lagerkräfte des Lastfalls LF2.

Das maßgebende Moment für die Bemessung ergibt sich zu:

maßg $M_v = M_v + h \cdot P = 327,00 + 0,74 \cdot 0 = 327,00 \text{ kNm}$

Die Breite eines Ersatzbalkens ist:

 $b = c_v + h = 0.30 + 0.74 = 1.04 \text{ m}$

Anschließend wird das aufnehmbare Moment M_{Rd} bestimmt, das größer als das Bruchmoment ist.

Folgende Tabelle zeigt die Parameter der Momentenermittlung in RF-/FUND Pro.

Erforderlicher Stahlquerschnitt	erf A _{s,Vx}	10.42	cm ²
 Bemessungswert des einwirkenden Biegemoments 	MEd,y	327.00	kNm
Bemessungswert des aufnehmbaren Moments	MRd,y	328.63	kNm
 Statische Nutzh öhe 	d	0.740	m
 Gewählte Festigkeitsklasse 		Beton C35/4	
Bemessungswert des Betons	fed	19833.30	kPa
Beiwert zur Berücksichtigung der Langzeitwirkung	αοο	0.850	
 Charakteristische Zylinderfestigkeit 	fck	35000.00	kPa
Teilsicherheitsbeiwert des Betons	γc	1.500	
 Rechnerische Bruchdehnung des Betons 	εcu	3.500	‰
- Betondehnung	εc	1.420	‰
Höhe der Druckzone	x	0.044	m
Breite der Betondruckzonenfläche	b	1.040	m
Bemessungswert der Betondruckkraft	Fed	453.06	kN
Bemessungswert der Streckgrenze	fyd	434783.00	kPa
 Charakteristischer Wert der Streckgrenze des Betonstahls 	fyk	500000.00	kPa
Teilsicherheitsbeiwert für Betonstahl	γs	1.150	
Vorhandene Stahldehnung	εs	22.500	‰
Hebelarm der inneren Kräfte	7	0.725	m

Bild 8.64: Aufnehmbares Moment M_{Rd.y}

Damit ermittelt sich der erforderliche Stahlquerschnitt erf A_{s.Vx} zu:

Gewählt wird eine Bewehrung von 6 Ø 16 mm im Abstand von 75 mm mit $A_s = 12,06$ cm².

Standardmäßig ist die Überprüfung der Übergreifungslänge der Köcherbewehrung nach [1] 8.7.3 in den Berechnungsdetails aktiviert. **Bei diesem Beispiel wurde die Überprüfung der Über**greifungslänge der Köcherbewehrung deaktiviert. Wäre das Kontrollfeld angehakt (siehe Kapitel 3.1.4, Seite 43), würde dies einen höheren Bewehrungsgehalt mit einem geringeren Stahldurchmesser erfordern.

8.2.2.2 Vertikale Bewehrung in y-Richtung

Zur Ermittlung von Anzahl und Durchmesser der vertikalen Bewehrungsstäbe in y-Richtung sind die Lagerkräfte des Lastfalls LF3 maßgebend.

Das maßgebende Moment für die Bemessung ergibt sich zu:

maßg $M_x = M_x + h \cdot P = 150,00 + 0,724 \cdot 0 = 150,00 \text{ kNm}$

Die Breite eines Ersatzbalkens ist:

 $b = c_x + h = 0,40 + 0,724 = 1,124 m$

Folgende Tabelle zeigt die Parameter zur Ermittlung des aufnehmbaren Moments M_{Rd}:

Erforderlicher Stahlquerschnitt	erf A _{s,Vy}	4.82	cm ²
Bemessungswert des einwirkenden Biegemoments	M _{Ed,x}	150.00	kNm
Bemessungswert des aufnehmbaren Moments	M _{Rd,x}	150.44	kNm
 Statische Nutzh	d	0.724	m
 Gewählte Festigkeitsklasse 		Beton C35/4	
Bemessungswert des Betons	fed	19833.30	kPa
 Beiwert zur Berücksichtigung der Langzeitwirkung 	α.cc	0.850	
 Charakteristische Zylinderfestigkeit 	fck	35000.00	kPa
 Teilsicherheitsbeiwert des Betons 	γc	1.500	
Rechnerische Bruchdehnung des Betons	δcu	3.500	‰
Betondehnung	εc	0.600	‰
 Höhe der Druckzone 	x	0.019	m
Breite der Betondruckzonenfläche	b	1.124	m
Bemessungswert der Betondruckkraft	Fod	209.61	kN
 Bemessungswert der Streckgrenze 	fyd	434783.00	kPa
Charakteristischer Wert der Streckgrenze des Betonstahls	fyk	500000.00	kPa
 Teilsicherheitsbeiwert f ür Betonstahl 	γs	1.150	
 Vorhandene Stahldehnung 	δs	22.500	‰
Hebelarm der inneren Kräfte	z	0.718	m

Bild 8.65: Aufnehmbares Moment M_{Rd,x}

Details..

Der erforderliche Stahlquerschnitt erf $A_{s,Vy}$ ermittelt sich dann zu:

erf
$$A_{s,Vy} = \frac{F_{cd}}{f_{yd}} = \frac{209,61}{43,478} = 4,82 \text{ cm}^2$$

Gewählt wird eine Bewehrung von 3 \varnothing 16 mm im Abstand von 200 mm mit A_s = 6,03 cm².

8.2.2.3 Horizontale Bewehrung (Schubbewehrung Köcher)

Der erforderliche Stahlquerschnitt der horizontalen Bügel Bu entspricht dem größeren Wert der Bewehrungen, der für die beiden vertikalen Richtungen ermittelt wurde.

Gewählt wird eine zweischnittige Bewehrung von 3 \varnothing 16 mm im Abstand von 200 mm mit dem Gesamtquerschnitt A_s = 12,06 cm².

Bild 8.66: Rendering der gewählten Bewehrung

8.3 Blockfundament mit glatten Köcherinnenseiten

In diesem Beispiel wird ein Blockfundament mit glatten Innenseiten bemessen.

8.3.1 System und Belastung

Eine Kragstütze aus Stahl ist zentrisch auf einem Blockfundament angeordnet. Für dieses Fundament wird die Ermittlung der Köcherbewehrung vorgestellt.

Bild 8.67: Statisches System – Kragstütze

Die Stütze mit dem Querschnitt HEA 200 wird in Baustahl Baustahl S 235 ausgeführt.

Für das Fundament wird die Betongüte C25/30 und die Betonstahlsorte B 500 S(A) angesetzt.

Bild 8.68: Belastung in den Lastfällen 1 bis 3

Aus den im Bild 8.68 gezeigten Lastfällen wird die Lastkombination LK1 gebildet, für die dann die Köcherbewehrung des Fundaments ermittelt wird.

 $\Rightarrow \ LK1 = 1,35 \cdot LF1 + 1,50 \cdot LF2 + LF3$

Die Schnittgrößen der LK1 werden nach Theorie II. Ordnung ermittelt.

8.3.2 Fundamentabmessungen

Die Abmessungen des Fundaments werden wie folgt festgelegt:

Bezeichnung	Symbol	Wert	Einheit	Meldung
🗆 Stütze				
Abmessung in x-Richtung	Cx	0.190	m	
Abmessung in y-Richtung	cy	0.200	m	
E Fundamentplatte				
Abmessung in x-Richtung	×	2.500	m	
 Abmessung in y-Richtung 	У	1.250	m	
Plattendicke	d	1.100	m	
🖾 Köcher				
 Köcherhöhe 	h	0.800	m	
Einbindetiefe Stütze	t	0.800	m	
Abmessung in x-Richtung				
 Oberes Stützenspiel 	aox	0.100	m	
 Unteres Stützenspiel 	aux	0.100	m	
Innenwandneigung	αχ	90.00	•	
Abmessung in y-Richtung				
 Oberes Stützenspiel 	aoy	0.100	m	
Unteres Stützenspiel	auy	0.100	m	
Innenwandneigung	αγ	90.00	•	

Bild 8.69: Abmessungen des Blockfundaments

Diese Abmessungen sind in Maske 1.2 Geometrie einzugeben.

8.3.3 Resultierende Lagerkräfte

Die Berechnung der LK1 liefert folgende Lagerkräfte:

P-x,d	29,25 kN
P-y,d	0 kN
P-z,d	60,23 kN
M-x,d	0 kN
M-y,d	-78,43 kNm
M-z,d	0 kN

Tabelle 8.1: Lagerkräfte für LK1

8.3.4 Ermittlung der horizontalen Köcherbewehrung Bu

Zunächst wird die horizontale Köcherbewehrung Bu ermittelt. Im Beispiel wird BuY maßgebend, da die maßgebende Horizontalkraft H_o in Richtung der x-Achse wirkt. Daraus ergibt sich die für die Horizontalbügel maßgebende Spaltzugkraft Z₁ bzw. Z₂.

$$H_O = \frac{5}{4} \cdot \frac{M}{t} + \frac{9}{8} \cdot P$$

Aus den Abmessungen im Bild 8.69 und den Lagerkräften aus Tabelle 8.1 ergibt sich:

$$H_{O} = \frac{5}{4} \cdot \frac{78,43}{0,80} + \frac{9}{8} \cdot 29,25 = 155,45 \text{ kN}$$

Aus der resultierenden Horizontalkraft H_o kann die Spaltzugkraft Z₁ ermittelt werden.

In diesem Fall ist die Lastverteilungsfläche durch die Fundamentlänge begrenzt. Die angesetzte Lastverteilungsfläche ds kann nicht länger sein als die Länge des vorhandenen Fundamentsporns. Für das Beispiel bedeutet dies:

$$\begin{array}{l} \left(x-c_x-2a_{ox}\right)/2 = ds\\ \left(2,50\ m-0,19\ m-0,20\ m\right)/2 = ds\\ ds = \left(2,50\ m-0,19\ m-0,20\ m\right)/2 = 1,055\ m\\ ds = 1,055\ m < d = 2e' \end{array}$$

 $Z_1 = \frac{H_O}{4} \times \left[\frac{d-c}{ds}\right]$

Aus der Horizontalkraft H_o und den Abmessungen des Blockfundaments ergibt sich:

$$Z_{1} = \frac{155,45}{4} \cdot \left[\frac{1,25 - 0,20}{1,055}\right] = 38,68 \text{ kN}$$
$$Z_{2} = \frac{H_{0}}{2} = \frac{155,45}{2} = 77,73 \text{ kN}$$

Aus den Zugkräften Z₁ und Z₂ wird der erforderliche Betonstahlquerschnitt ermittelt:

$$f_{yd} = \frac{f_{yk}}{\gamma_s} = \frac{50 \text{ kN/cm}^2}{1,15} = 43,5 \text{ kN/cm}^2$$
$$A_{s1,erf} = \frac{Z1}{f_{yd}} = \frac{38,68}{43,5} = 0,89 \text{ cm}^2$$
$$A_{s2,erf} = \frac{Z2}{f_{yd}} = \frac{77,73}{43,5} = 1,79 \text{ cm}^2$$

Aus dem erforderlichen Bewehrungsquerschnitt kann der Bügel Bu_{γ} bestimmt werden. Die zur Abdeckung von A_{s,erf} gewählte Bewehrung lässt sich in Maske *2.6 Köcherbewehrung* einsehen.

8

Bild 8.70: Maske 2.6 mit Darstellung der Köcherbewehrung Bu

Die Bezeichnung der Bügelposition Bu_{γ} bzw. Bu_{χ} orientiert sich an der Lastrichtung der Spaltzugkraft Z₁.

Im Beispiel ist die Horizontalkraft H_o in x-Richtung orientiert. **Die Spaltzugkraft Z₁ wirkt in y-Richtung.** Daher trägt der Bügel, der aus der Horizontalkraft H_o in x-Richtung resultiert, die Bezeichnung **Bu**_v.

8.3.5 Ermittlung der vertikalen Bewehrung Vx

Die erforderliche vertikale Bewehrung kann anhand der in [7] beschriebenen Randzugkraft Z_R bestimmt werden.

 $Z_R=0,142\,H_O$

Demnach ergibt sich Z_R für das Beispielfundament zu:

 $\rm Z_{\rm R}=0,142\cdot155,45=22,09\,kN$

 $A_{S,V,erf} = Z_R/f_{yd}$

 $A_{S,V,erf} = 22,09/43,5 = 0,51 \text{ cm}^2$

8.3.6 Nachweis der Betonspannung

Folgende Werte gehen in den Nachweis der Betonspannungen ein:

$$\begin{split} H_{\rm O} &= 155,45 \ \text{kN} \\ H_{\rm U} &= 126,20 \ \text{kN} \\ t &= 80 \ \text{cm} \\ a_0 &= 10 \ \text{cm} \\ a_U &= 10 \ \text{cm} \\ \sigma_c &= \frac{H}{0,2 \ t \cdot (c+2a)} \\ \sigma_{c,O} &= \frac{155,45}{0,2 \cdot 80 \cdot (20+2 \cdot 10)} = 0,243 \ \text{kN/cm}^2 \\ \sigma_{c,U} &= \frac{126,20}{0,2 \cdot 80 \cdot (20+2 \cdot 10)} = 0,197 \ \text{kN/cm}^2 \\ f_{cd} &= \alpha_{cc} \cdot \frac{f_{ck}}{\gamma_c} \longrightarrow f_{cd} = 0,85 \cdot \frac{25}{1,50} = 1,417 \ \text{kN/cm}^2 \end{split}$$

Für den Nachweis der Betondruckspannungen wird die Betondruckspannung aus H_O maßgebend, da die Köcherwände senkrecht angeordnet sind. Wären die Köcherwände geneigt, könnte trotz der geringeren Horizontalkraft der Nachweis aus H_U maßgebend werden.

Daraus ergibt sich das Nachweiskriterium zu:

$$\frac{\sigma_{c,O}}{f_{c,d}} = \frac{0.243 \text{ kN/cm}^2}{1.471 \text{ kN/cm}^2} = 0.171 < 1.000$$

Bild 8.71: Bewehrung des Blockfundaments mit glatten Köcherinnenseiten

8

8.4 Grundbruchnachweis nach Verfahren 2*

In diesem Beispiel werden die Unterschiede zwischen den Nachweisverfahren 2 und 2* gemäß EN 1997-1 vorgestellt.

Hierfür wird das Beispiel aus [3] Kapitel 3.2.8 *Rechenbeispiel für den Grenzzustand der Tragfähigkeit* verwendet, angepasst und in RF-/FUND Pro in zwei Bemessungsfällen untersucht. Die unterschiedlichen Ergebnisse der beiden Nachweisverfahren (nachfolgend "Verfahren" genannt) werden abschließend tabellarisch dokumentiert.

Die Fundamentabmessungen des Beispiels werden modifiziert, da die in [3] beschriebenen Abmessungen beim Grundbruchnachweis zu einer Ausnutzung von über 100 % führen. Ein Nachweiskriterium > 1,0 für den Grundbruchnachweis ist in RF-/FUND Pro nicht vorgesehen, sodass die Berechnung für die in der Literatur genannten Abmessungen zu einem Abbruch mit entsprechendem Hinweis auf zu geringe Fundamentabmessungen führt.

Die für das Beispiel verwendeten Abmessungen sind im Kapitel 8.4.2 angegeben.

8.4.1 System und Belastung

System

Es wird eine 5 m hohe Kragstütze untersucht, für die ein Fundament des Typs *Fundamentplatte* bemessen werden soll.

Bild 8.72: Statisches System – Kragstütze

Im RFEM- bzw. RSTAB-Modell wird für den Kragstützen-Stab der Stabtyp *Kopplung Fest-Fest* verwendet.

Die Lagerung der Kragstütze wird durch ein starres Knotenlager realisiert.

Belastung

Es werden drei Lastfälle mit folgenden Lasten definiert:

LF1 : gk - vertikal Belastung (kN)	900.000	LF2 : qk1 - vertikal Belastung [kN]	1200.000	LF3 : qk2 - horizontal Belastung [kN]
	ţ		↓ ī	300.000
×				
z				

Bild 8.73: Belastung in den Lastfällen 1 bis 3

Aus den im Bild 8.73 gezeigten Lastfällen wird die Lastkombination LK1 gebildet, für die dann der Grundbruchnachweis des Fundaments durchgeführt wird.

 $\Rightarrow LK1 = 1,35 \cdot LF1 + 1,50 \cdot LF2 + 1,05 \cdot LF3$

8.4.2 Fundamentabmessungen

Die Abmessungen des Plattenfundaments werden wie folgt festgelegt:

Bezeichnung	Symbol	Wert	Einheit	3 50
🛱 Stütze				C.34
 Abmessung in x-Richtung 	Cx	0.400	m	250
Abmessung in y-Richtung	су	0.400	m	6.00
Fundamentplatte				
Abmessung in x-Richtung	×	2.500	m	
 Abmessung in y-Richtung 	У	2.500	m	
Plattendicke	d	0.800	m	

Bild 8.74: Abmessungen der Fundamentplatte

Die Abmessungen der Fundamentplatte sind in Maske 1.2 Geometrie einzugeben.

Die Abmessungen wurden im Vergleich zum Beispiel aus [3] erhöht, um eine Ausnutzung für den Grundbruchnachweis < 1,00 zu ermöglichen.

8.4.3 Resultierende Lagerkräfte

Die Berechnung der LK1 liefert folgende Lagerkräfte:

P-x,d	315,0 kN
P-y,d	0 kN
P-z,d	3 015,0 kN
M-x,d	0 kN
M-y,d	-1 575,0 kNm
M-z,d	0 kN

Tabelle 8.2: Lagerkräfte für LK1

8.4.4 Bodenparameter

Für die Fundamentbemessung in RF-/FUND Pro werden folgende Bodenparameter festgesetzt:

- Konsolidierte Untergrundverhältnisse
- Wirksame Kohäsion

2

 $c_{k}^{'} = 0,020 \text{ MN}/\text{m}^{2}$ $\gamma_{\rm 1,k}=\gamma_{\rm 2,k}=\rm 22,0~kN/m^3$ - Bodenwichte über und unter der Sohle $\varphi_{k} = 32,50^{\circ}$

- Bodenreibungswinkel Um diese Bodenparameter in RF-/FUND Pro einzugeben, wird zunächst ein Bodenprofil erzeugt (siehe Kapitel 2.1.5, Seite 12). Hierbei sind zwei Schichten anzulegen, für welche beliebige Böden aus der Bibliothek ausgewählt werden können. Sind die Bodenschichten mit den entsprechenden Höhenlagen und Dicken erstellt, sind in den Parametern der jeweiligen Bodenschicht die Eingangswerte für die Wichte, die Kohäsion und den Bodenreibungswinkel entsprechend der obigen Vorgaben festzulegen.

Im Dialog Bodenprofil sind somit folgende Einstellungen vorzunehmen:

Bild 8.75: Vorgaben im Dialog Bodenprofil

8.4.5 Bemessungsdetails

Details...

Im Dialog Details werden folgende Einstellungen für das Beispiel getroffen:

Details		X
Fundamentplatte	Position des Ben	nessungsschnittes
Mindestbewehrung nach 9.2.1.1	🔘 Durch Stütze	enmitte
Ohne Biegebewehrung nach 12.9.3	Ourch Stütze	enrand
	🔘 Durch Köch	erwandmitte
	O Durch Auße	nseite der Köcherwand
	O Definieren	
Bemessung in der Geotechnik nach EN 1997-1 für	Durchstanzen	
Lagesicherheit (2.4.7.2)	Iterative Ber	echnung des Rundschnittes
Aufschwimmen (2.4.7.4)	🔘 Definition de	s Abstandes I _w vom Rundschnitt zum
Grundbruch (6.5.2)	Stützenrand	
Gleiten (6.5.3)	🔽 Definierter D	urchstanzkegel I _w innerhalb der
Stark exzentrische Belastungen (6.5.4)	Fundamentp	olatte
	Definierter A	bstand Iw, def: 1.000 🔷 *d
Stahlbetonbemessung nach EN 1992-1-1 für	Faktor für Berüc	cksichtigung der entlastenden kred:
Durchstanzen (6.4)	Bodenpressung	j innerhalb des Hundschnitts
Ubergreifungslänge der Köcherbewehrung (8.7.3)	Parameter ß er	mittelt nach:
	6.4.3(3) - Volla	alastische Schubspannungsvertigen R:
	0.4.5(5) *00	
Lasten in Maske 1.4	Deaktivierung vo	on Lagerlasten für die Fundamentbemessung
🥅 Für alle Fundamente gleich	Lagerlast	Deaktivierte Richtung
📝 Für (STR) und (GEO) gleiche Lasten anwenden	Px:	Kräfte in +x Richtung 🚽
Berücksichtigung der Einflüsse aus Theorie II.	Py:	Kräfte in +y Richtung 🚽
Ordnung nach 5.1.4 durch Erhöhung des Auflagermomentes um:	Pz:	Kräfte in +z Richtung 🚽
Faktor:	M x:	Positive Momente um x-Achse 🚽
Eaktor:	My:	Positive Momente um y-Achse
(?)		
		Abbiechen

Bild 8.76: Einstellungen im Dialog Details

8.4.6 Weitere Bemessungsvorgaben

In Maske 1.1 Basisangaben sind folgende Einstellungen vorzunehmen:

- Nationaler Anhang:	CEN
- Fundamenttyp:	Fundamentplatte
- Nachweis der Bodenpressung:	über Grundbruchwiderstand nach EN 1997-1 Anhang D
- Bodenkennwerte:	Konsolidierte Verhältnisse

Da im Beispiel lediglich der Vergleich zwischen Verfahren 2 und Verfahren 2* untersucht wird, sind die Eingaben in den Masken 1.2 und 1.3 hinsichtlich der Stützenabmessung, der verwendeten Betongüte etc. nicht von Bedeutung. Sie werden hier nicht weiter dokumentiert.

In Maske 1.4 Belastung wird die LK1 für den Grundbruchnachweis ausgewählt.

Hinweis zur Eingabe:

In einem Bemessungsfall kann ein Knoten nur einmal für die Bemessung ausgewählt werden. Daher sollte für das Verfahren 2 der *Fall 1*, für das Verfahren 2* der *Fall 2* angelegt werden. Hierzu bietet sich die Menüfunktion **Datei** \rightarrow **Fall kopieren** an.

8.4.7 Maßgebende Nachweise

Nach der Berechnung wird für den Fall 1 (Verfahren 2) folgendes Nachweiskriterium ausgegeben:

8

Maßgebender Knoten Nachweis- Knoten Kommentar zur Nachweisart Grundbruch (EC 7, 6.5.2) 1 LK1 0.333 Begebruchsicherhet Plate (EC 2, 6.1) 1 LK1 0.381 Knoten Nr.: 1 LK1 0.381 Knoten Nr.: 1 LF / LK: LK1 0.381 Exmoten Nr.: 1 LF / LK: LK1 0.381 Bernessungswet aus Auflagerkräfte und -momente Nr. 1 Emessungswet aus Auflagerkräfte und -momente - Am Knoten Nr. 1 Emessungswet aus Auflagerkräfte und -momente Nr. 1 - Lestfal LF / LK: LK1 Pz.4 3015.00 kN Hottontalkraft in x-Richung Px.4 3015.00 kN Hottontalkraft in y-Richung Px.4 3015.00 kN Moment um die y-Achse MY.4 1.575.0 kNim B Beressungswet die Grundbrucheirwirkung V.4/X 0.542 MN/m ² B Beressungswet die Grundbrucheirwirkung R.4/X 1.571 MN/m ² B Beressungswet die Grundbruchwiderstand R.4/X 1.571 MN/m ²	2 Maßgebende Nachweiskriterien							
Nachweisart Knoten LF Kiterium Kommentar zur Nachweisart Grundbruch (EC 7, 65.2) 1 LK1 0.533 Image: Comparison of the state (EC 2, 6.1) 1 LK1 0.981 Biegebruchsicherheit Platte (EC 2, 6.1) 1 LK1 0.981 Image: Comparison of the state (EC 2, 6.1)		M	laßgebend	er Na	chweis-			
Gundbruch (EC 7, 6.5.2) 1 LK1 0.839 Begebruchsicherheit Plate (EC 2, 6.1) 1 LK1 0.981	Nachweisart	Knoten	LF	K	iterium		Kommentar zur Nach	weisart
Biegebruchsicherheit Platte (EC 2, 6.1) 1 LK1 0.981 Image: Construction of the state of th	Grundbruch (EC 7, 6.5.2)	1	LK.	1	0.839			
Knoten NI:: 1 LF / LK: LK1 Extrem: Max 0.981 ≤ 1 Image: Construction of the image: Construction of th	Biegebruchsicherheit Platte (EC 2, 6.1)	1	LK	1	0.981			
Knoten Nt.: Image: LF / LK: LK / LK: Image: LK								
Knoten Nt.: Image: LF / LK: LK1 LK1 Image: LK1 Bemessungswett aus Auflagerkräfte und -momente Nr. 1 Image: LK1 Bemessungswett aus Auflagerkräfte und -momente Nr. 1 Image: LK1 Bemessungswett aus Auflagerkräfte und -momente Nr. 1 Image: LK1 Bemessungswett aus Auflagerkräfte und -momente Nr. 1 Image: LK1 Bemessungstuation BS GR Knoten Image: LK1 Bemessungswett aus Auflagerkräfte und -momente Nr. 1 Image: LK1 Image: LK1 Bemessungswett aus Auflagerkräfte und -momente Nr. 1 Image: LK1 Image: LK1 Bemessungswet der Grundbucheinwirkung Pr.4. 3015.00 kN Moment um die x-Achse Mr.4. 1.000 kNm Moment um die x-Achse Mr.4. 1.57.1 MN/m ² Bemessungswet der Grundbucheinwirkung Wr.4. 0.942 NN/m ² Bemessungswet der Grundbucheinwirkung St.4.4. 1.57.1 MN/m ² Bemessungswet der Grundbucheinwirkung Grundbuchwiderstand R.4/A. 1.57.1 Bemessungswet der Grundbuch								
Knoten N:: LF / LK: LK1 Extrem: Max: 0.981 ≤ 1 Image: Constraint of the ima								
Knoten Nt:: 1 LF / LK: LK1 Extrem: Max: 0.981 ≤ 1 Image: Construction of the state of the								
Knoten Nr.: Image: LK1 Bemessungswet aus Auflagerkräfte und -momente Max An Knoten Image: Knoten 1; LK1 Bemessungswet aus Auflagerkräfte und -momente Max An Knoten Image: Knoten 1; LK1 Bemessungswet aus Auflagerkräfte und -momente Max An Knoten Image: Knoten 1; LK1 Bemessungswet aus Auflagerkräfte und -momente Max An Knoten Image: Knoten 1; LK1 Bemessungswet aus Auflagerkräfte und -momente Max Verklaikraft PZ.d. 3015.00 kN Horizontalkraft in y-Richtung PY.d. 0.000 kN Moment um die x-Achse MX.d. 0.00 kNm Moment um die x-Achse MY.d. 15750 KNm Bemessungswet der Grundbucheinwirkung V.d/A'. 0.9422 MN/m ² Bemessungswet der Grundbucheinwirkung V.d/A'. 0.942 MN/m ² Bemessungswet der Grundbucheinwirkung V.d/A'. 0.942 MN/m ² Bemessungswet der Grundbucheinwirkung V.d/A'. 1.571 MN/m ² Bemessungswet der Grundbucheinwirkung V.d/A'. 1.571 MN/m ² Bemessungswet der Grundbucheinwirkung K.d/A 1.571 MN/m ² Bemessungswet der Grundbucheinwirkung K.d/A'. 1.571 MN/m ² Bemessungswet der Gr								
Knoten Nr.: Image: LF / LK: LK1 Extrem: Max: 0.981 ≤ 1 Image: LK1 Bemessungswet aus Auflagerkräfte und -momente Nr. 1 Image: LK1 Image: LK1 Bemessungswet aus Auflagerkräfte und -momente Nr. 1 Image: LK1 Image: LK1 Bemessungswet aus Auflagerkräfte und -momente Nr. 1 Image: LK1 Image: LK1 Bemessungsituation BS GR Image: LK1 Image: LK1 Image: LK1 Image: LK2 Signadbruch (EC 7, 65.2); Knoten 1; LK1 Image:								
Knoten Nt.: LF / LK: LK1 Extrem: Max 0.981 ≤ 1 Bemessungsweit aus Auflagerkräfte und -momente <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Knoten Nt.: L F / LK: LK1 Extrem: Max: $0.981 \le 1$ Image: Constraint of the state of the st								
Image: Noten NI: Image: Provide the second seco			_		0.001			
Bernessungsweit aus Auflagerkräfte und imomente Am Knoten Am Knoten Lasfall Bernessungstuation Bessungstuation Vertikalkraft Pz.d. 3015.00 kN Horizontalkraft in x-Richtung Horizontalkraft in x-Richtung Horizontalkraft in x-Richtung Moment um die x-Achse Moment um die x-Achse My.d. Bernessungsweit der Grundbrucheinwirkung Bernessungsweit der Grundbruchwiderstand Bernessungsweit der Grundbrucheinwirkung Ver/A' Demessungsweit der Grundbrucheinwirkung Bernessungsweit der Grundbrucheinwirkung Bernessungsweit der Grundbruchwiderstandes Ra/A' Bernessungsweit der Grundbruchwiderstand Ra/A' Istikterium Nachweiskreiterium	Extrem		-	Max:	0.981 ≤			P>1
Srundbruch (EC 7, 6.5.2); Knoten 1; LK1 Bemessungswet aus Auflagerkräfte und -momente Am Knoten I Lasfall LF Ventikalivaft PZ.d. 3015.00 Horizontalkraft in x-Richtung PX.d. 315.00 Horizontalkraft in x-Richtung PY.d. 0.00 Moment um die x-Achse MX.d. 0.00 Moment um die x-Achse MY.d. 1575.0 Bemessungsweit der Grundbrucheinwirkung V/d/A' 0.942 Bohrweis Schnweis Z Bemessungsweit der Grundbrucheinwirkung V/d/A' 0.942 Bemessungsweit der Grundbrucheinwirkung Kirk/A' 1.571 Bemessungsweit der Grundbrucheinwirkung Kirk/A' 1.571 Murma Kirkeinum (8.39) Kirkeinum								
⊒ Bemessungsweit aus Auflägerkräfte und -momente Am Knoten Nr. 1 Lastfall LF LK1 Bemessungsituation BS GR Vertikalkraft P.z.d. 3015.00 kN Horizontalkraft in x-Richtung P.x.d. 3105.00 kN Horizontalkraft in x-Richtung P.y.d. 0.00 kNm Moment um die x-Achse MX.d. 0.00 kNm Bemessungsweit der Grundbrucheinwirkung V's/A' 0.942 MN/m ² Bemessungsweit der Grundbrucheinwirkung V'g/A' 0.942 MN/m ² Bemessungsweit der Grundbrucheinwirkung V'g/A' 0.942 MN/m ² Bemessungsweit der Grundbrucheinwirkung V'g/A' 0.942 MN/m ² Bemessungsweit der Grundbrucheinwirkung Y'g/A' 0.942 MN/m ² Bemessungsweit der Grundbruchwiderstandes Ra/A' 1.122 MN/m ² Grundbruchwiderstand Ra/A' 1.571 MN/m ² Bemessungsweit der Grundbruch (7R,v) 1.400 V/a' Nachweiskinteinum Kriterium 0.839 8	Grundbruch (EC 7, 6.5.2) Knoten 1 LK1							
Am Knoten Nr. 1 Lastfall LF LK1 Bemessungsituation BS GR Vertikalkraft PZ,d 3015.00 kN Horizontalkraft in x-Richtung PX,d 315.00 kN Horizontalkraft in y-Richtung PY,d 0.00 kN Moment um die x-Achse MX,d 0.00 kN Bemessungsweit der Grundbrucheinwirkung V's/A' 0.942 MN/m ² Grundbruchwiderstand R/A' 1.571 MN/m ² Bemessungsweit der Grundbrucheinwirkung V's/A' 0.942 MN/m ² Grundbruchwiderstand R/A' 1.571 MN/m ² Bemessungsweit der Grundbrucheinwirkung V's/A' 0.942 MN/m ² Bemessungsweit der Grundbrucheinwirkung V's/A' 0.942 MN/m ² Bemessungsweit der Grundbrucheinwirkung V's/A' 0.942 MN/m ² Bemessungskeitertum R/A' 1.571 MN/m ² Machweiskrietneum Kriterium 0.839 M	Bemessungswert aus Auflagerkrafte und momente							
Lastrain L L LK1 Bemessungsituation BS GR Vertikalkraft P.Z.d. 3015.00 kN Horizontalkraft n. SRichtung P.X.d. 315.00 kN Horizontalkraft n. SRichtung P.Y.d. 0.00 kN Moment um die x-Achse M.X.d. 0.00 kNm Bemessungsweit der Grundbrucheinwirkung Y.d/A' 0.942 MN/m ² Bernessungsweit der Grundbrucheinwirkung Y.d/A' 0.942 MN/m ² Bemessungsweit der Grundbrucheinwirkung Y.d/A' 0.942 MN/m ² Bemessungsweit der Grundbrucheinwirkung Y.d/A' 1.921 MN/m ² Bernessungsweit der Grundbrucheinwirkung Y.d/A' 1.942 MN/m ² Bernessungsweit der Grundbrucheinwirkung Y.d/A' 1.942 MN/m ² Bernessungsweit der Grundbrucheinwirkung Y.d/A' 1.942 MN/m ² Bernessungsweit der Grundbrucheinwirkung Riz/A' 1.571 MN/m ² Teilsicherheitsbeiweit für Grundbruch TR.y.v 1.400 N/m ² <td>- Am Knoten</td> <td></td> <td></td> <td>Nr.</td> <td>1</td> <td></td> <td></td> <td></td>	- Am Knoten			Nr.	1			
Demessings/tution DB GR Vertikal/saft PZ_d 301500 kN Horizontalkraft in x-Richtung PX_d 315.00 kN Horizontalkraft in y-Richtung PY_d 0.00 kN Moment um die x-Achse MX_d 0.00 kN Moment um die y-Achse MY_d 1.5750 kNm 2) Bemessungswert der Grundbrucheinwirkung V d/A' 0.942 MN/m ² 2) Grundbruchwiderstand R/A' 1.571 MN/m ² Bemessungswert des Grundbrucheinwirkung V g/A' 0.942 MN/m ² Bemessungswert der Grundbruchwiderstandes R/A' 1.721 MN/m ² Bemessungswert des Grundbruchwiderstand R/A' 1.721 MN/m ² Teilsicherheitsbeivert für Grundbruch YR,v 1.400 V/m ² Vachweiskriterium Kriterium 0.839 V	Lastfall			LF	LK1			
Vertikalivativ P Z.d. 3010.00 kN Horizontalkraft in X-Richtung P X.d. 31500 kN Horizontalkraft in Y-Richtung P Y.d. 0.00 kN Moment um die X-Achse M X.d. 0.00 kNm Moment um die Y-Achse M Y.d. 1575.0 kNm B Bemessungsweit der Grundbrucheinwirkung V Y/A' 0.942 MN/m² B Chundbruchwiderstand R Ix/A' 1.571 MN/m² B Bemessungsweit der Grundbrucheinwirkung V g/A' 0.942 MN/m² B Bemessungsweit der Grundbrucheinwirkung V g/A' 0.942 MN/m² B Bemessungsweit der Grundbrucheinwirkung V g/A' 0.942 MN/m² B Bemessungsweit der Grundbrucheinwirkung V g/A' 1.571 MN/m² B Crundbruchwiderstand R k/A' 1.571 MN/m² Filsicherheitsbeivert für Grundbruch Y R.v 1.400 Nachweiskriehum Kriterium 0.839	Bemessungsituation			85	GR 2015.00	LeNI		
Horizontalkati ni Arkoti kung 1 X.8 3 10.00 KN Horizontalkati ni Arkoti kung 1 Y.4 0.00 kN Moment um die x-Achee MX.4 0.00 kNm Moment um die x-Achee MY.4 0.942 N/m Bemessungsweit der Grundbrucheinwirkung V.4/A' 0.942 N/m ² Bemessungsweit der Grundbruchwiderstand R.k/A' 1.571 N/m ² Bemessungsweit der Grundbruchwiderstand R.k/A' 1.571 N/m ² Machweiskreiterum Kriterium 0.839 N/m ²	Vertikakiati			F Z,d	3015.00	KIN IzN		
Moment um die x-Achse M X_d 0.00 kNm Moment um die x-Achse M X_d 0.00 kNm Bemessungsweit der Grundbrucheinwirkung V d/A' 0.942 MN/m ² Bohrweis Rk/A' 1.571 MN/m ² Bemessungsweit der Grundbrucheinwirkung V d/A' 0.942 MN/m ² Bemessungsweit der Grundbrucheinwirkung V d/A' 0.942 MN/m ² Bemessungsweit der Grundbrucheinwirkung V d/A' 0.942 MN/m ² Bemessungsweit des Grundbrucheinwirkung V d/A' 1.571 MN/m ² Bemessungsweit der Grundbrucheinwirkung V d/A' 1.571 MN/m ² Bemessungsweit der Grundbruchwiderstandes R k/A' 1.571 MN/m ² Teilsicherheitsbeivent für Grundbruch 7 R,v 1.400 Nachweiskriterium Kriterium 0.839	Horizontalkraft in x-Nichtung			T X,0	315.00	IcN.		
Moment un die V-Achse MV,d. 1575, kl/m Ø Moment um die y-Achse MV,d. 1575, kl/m Ø Bemessungsweit der Grundbrucheinwirkung V d/A' 0.942 Ø Kundbruchwiderstand R k/A' 1.571 Nachweis R d/A' 1.122 Ø Bemessungsweit des Grundbrucheinwirkung V g/A' 0.942 Ø Bemessungsweit der Grundbrucheinwirkung V g/A' 0.942 Ø Bemessungsweit des Grundbrucheinwirkung V g/A' 0.942 Ø Bemessungsweit des Grundbrucheinwirkung V g/A' 0.942 Ø Bemessungsweit des Grundbruchwiderstandes R g/A' 1.722 Ø Fundbruchwiderstand R k/A' 1.571 Ø Nachweiskriterium Kriterium 0.839	Moment um die x-Achee			My a	0.00	k Nm		
Bemessungsweit der Grundbrucheinwirkung Va/A O.942 MN/m ² Grundbruchwiderstand Ri/A 1.571 MN/m ² Bemessungsweit der Grundbrucheinwirkung Va/A O.942 MN/m ² Bemessungsweit der Grundbrucheinwirkung Va/A O.942 MN/m ² Bemessungsweit der Grundbruchwiderstandes Ra/A 1.571 MN/m ² Teilsicherheitsbeiweit für Grundbruch Yr, v 1400 Nachweiskrietnum Kriterium 0.839	Moment um die v-Achse			Mx.a	-1575.0	kNm		X
B Grundbruchwiderstand R k/A 1.571 MN/m ² Nachweis	Bemessungswert der Grundbrucheinwirkung			V'a/A'	0.942	MN/m ²		
Rachweis Z Bemessungsweit der Grundbrucheinwirkung V.a/A' 0.942 MN/m ² Bemessungsweit des Grundbruchwiderstandes R.a/A' 1.122 MN/m ² Grundbruchwiderstand R.k/A' 1.571 MN/m ² Teilsicherheitsbeiweit für Grundbruch YR.v 1.400 Nachweiskriterium Kiterium 0.839	∃ Grundbruchwiderstand			Rk/A	1.571	MN/m ²		
Bemessungswert der Grundbrucheinwirkung V d/A' 0.942 MN/m ² Bemessungswert des Grundbruchwiderstandes R d/A' 1.122 MN/m ² Grundbruchwiderstand R k/A' 1.122 MN/m ² Teilsicherheitsbeiwert für Grundbruch 7 R, v 1.400 Nachweiskriterium Kriterium 0.839	□ Nachweis							z
⊟ Bemessungswert des Grundbruchwiderstandes R₂/A' 1.122 MN/m² Grundbruchwiderstand R₂/A' 1.571 MN/m² Teilsicherheitsbeiweit für Grundbruch γ/R₂v 1.400 Nachweiskreitweim Kriterium 0.839	Bemessungswert der Grundbrucheinwirkung			V'd/A'	0.942	MN/m ²		
Grundbruchwiderstand Rk/A' 1.571 MN/m ² Teilsicherheitsbeiwert für Grundbruch //R.v 1.400 Nachweiskritenium Kritenium 0.839	Bemessungswert des Grundbruchwiderstandes			Rd/A	1.122	MN/m ²		
Teilsicherhetsbeiwert für Grundbruch /R.v 1.400 Nachweiskriterium 0.839	- Grundbruchwiderstand			R _k /A	1.571	MN/m ²		
Nachweiskriterium 0.839	Teilsicherheitsbeiwert für Grundbruch			γR,v	1.400			
	Nachweiskriterium			Kriterium	0.839			-
							🗊 🚰 🐼 🕅	Y IZ XXX

Bild 8.77: Nachweiskriterium für Verfahren 2

Im Fall 2 für das Verfahren 2* liegen folgende Ergebniswerte vor:

Bild 8.78: Nachweiskriterium für Verfahren 2*

8.4.8 Vergleich der Ergebnisse

Entsprechend der zuvor genannten Vorgaben wird im *Fall 1* der Grundbruchwiderstand mit dem Verfahren 2, im *Fall 2* mit der Verfahren 2* ermittelt.

Zusammenfassend ergeben sich folgende Unterschiede:

	Verfahren 2	Verfahren 2*
Vertikale	$V_k = 900 + 125 + 100$	1200 = 2225 kN
Beanspruchung V	$V_d = 1,35 * (900 + 125) +$	$1,50 * 1200 = 3184 \ kN$
horizontale Beansp. bei	$H_k = 0.7 * 300$	$= 210 \ kN$
Berücksichtigung von φ0	$H_d = 210 * 1,50$	0 = 315 kN
Lastneigung	315/3184 = 0,10	210/2225 = 0,095
Moment in	$M_k = 5.8 * 210 =$	= 1218 kNm
Fundamentsohle	$M_d = 5.8 * 315 =$	= 1827 kNm
Exzentrizität	1827/3184 = 0,574	1218/2225 = 0,547
Ersatzfläche A'	$A' = 3,38m^2$	$A' = 3,513m^2$
Ersatzlänge L'	$L' = 2,500m^2$	$L' = 2,500m^2$
Ersatzbreite B'	$B' = 1,352m^2$	$B' = 1,405m^2$
Tragfähigkeitsbeiwerte	$N_q =$	24,585
	$N_{\gamma} = 1$	30,050
	$N_c = 1$	37,020
Formbeiwerte	<i>s</i> _{<i>q</i>} = 1,291	<i>s</i> _{<i>q</i>} = 1,302
	<i>s_c</i> = 1,303	<i>s_c</i> = 1,315
	$s_{\gamma} = 0,838$	$s_{\gamma} = 0,831$
Neigungsbeiwerte	$i_q = 0,847$	i _q = 0,857
(Lastneigung infolge der	$i_{\gamma} = 0,766$	$i_{\gamma} = 0,780$
Horizonatikraft H)	$i_c = 0,841$	$i_c = 0.851$
	m = 1,649	m = 1,640
Grundbruchwiderstand	$R_k = 1570,81 \text{kN}/\text{m}^2 * 3,38 \text{ m}^2$	$R_k = 1611,97 \text{ kN}/\text{m}^2 * 3,513 \text{ m}^2$
	$R_k = 5309,34 \text{ kN}$	R _k = 5662,86 kN
	$R_d = R_k/1.4 = 3792.38 \text{ kN}$	$R_d = R_k/1.4 = 4044.90 \text{ kN}$
Bemessungswert R _d /A'	$R_d/A' = 1122,01 \text{ kN/m}^2$	$R_{d}/A' = 1151,41$
Bemessungswert der	$V_{\rm d}/{\rm A}' = 941,731~{\rm kN}$	$V_{\rm d}/{\rm A}' = 906,30~{\rm kN}$
Gundbrucheinwirkung		
Nachweiskriterium	$\eta = 941,731/1122,01 = 0,839$	$\eta = 906,30/1151,41 = 0,787$

Bild 8.79: Vergleich der Zwischenergebnisse und des Nachweiskriteriums zwischen Verfahren 2 und 2*

Literatur

- [1] DIN EN 1992-1-1: Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN1992-1-1:2001 + AC:2010. Beuth Verlag GmbH, Berlin, 2010.
- [2] DIN EN 1997-1: Entwurf, Berechnung und Bemessung in der Geotechnik Teil1: Allgemeine Regeln. Beuth Verlag GmbH, Berlin, 2008.
- [3] Karl Josef Witt. *Grundbau-Taschenbuch: Teil 3: Gründungen und geotechnische Bauwerke*. Ernst & Sohn, Berlin, 7. Auflage, 2009.
- [4] Fritz Leonhardt. *Vorlesungen über Massivbau*, Band 6. Springer, Berlin, Heidelberg, New York, 1979.
- [5] V. Steinle A.; Hohn. *Bauen mit Fertigteilen im Hochbau. Beton-Kalender 1988/2*. Ernst & Sohn, Berlin.
- [6] EN 1990: Grundlagen der Tragwerksplanung. Beuth Verlag GmbH, Berlin, 2010.
- [7] Emil Grasser und Gerd Thielen. Hilfsmittel zur Berechnung der Schnittgrößen und Formänderungen von Stahlbetontragwerken nach DIN 1045. *Deutscher Ausschuss für Stahlbeton*, 1978.

⊿ Dlubal

Index

3D-Rendering	4 D

A

Abmessungen	23, 24, 25, 51
Abminderungsbeiwerte	
Anteiliges Bemessungsmoment	
Auflast	
Aufschwimmen (UPL)	33, 41, 101
Ausdruck	70
Außergewöhnlich	
Auslegen	24, 25

В

Basisangaben
Baugrund (GEO)
Belastung
Bemessungsdetails
Bemessungsfall
Bemessungsschnitt 40
Bemessungssituation
Bemessungsverfahren
Betondeckung
Betongüte
Betonkubatur
Betonspannung
Betonstahllagermatten
Betonstahlsorte
Bewehrung
Bewehrung anpassen
Bewehrungsart
Bewehrungsbereich
Bewehrungsmattenbibliothek
Bewehrungsplan
Bewehrungsquerschnitt
Bewehrungsrichtung
Bewehrungsstab 32
Bewehrungsvorschlag58
Bezeichnung der Bügelposition 121
Biegebruchsicherheit
Blockfundament 10, 47, 48, 115, 118
Bodenkennwerte
Bodenpressung
Bodenprofil
Bodenschicht
Bodentausch
Bügel

С

Charakteristische Werte	ł
-------------------------	---

Darzustellende Bewehrung	. 65
Dauer	5, 36
Deaktivieren von Lagerlasten	. 45
Dezimalstellen	. 74
Durchmesser	.60
Durchstanzen	. 43
Durchstanzkegel	. 43
Durchstanznachweis	114
DXF-Datei	. 79

B

Ε

Effektive Fundamentfläche 102
Einbindetiefe 25, 37, 46, 47, 48
Eingabedaten
Einheiten
Einzellasten
Endzustand
Entlastende Bodenpressung 44
Erddruckbeiwert 17
Erdwiderstand
Erforderliche Bewehrung54
Ergebnisauswertung
Ergebniskombination
Ergebnismasken
Ergebnisse
Ergebniswerte
Export der Bewehrungszeichnungen 79
Export Ergebnisse
Exzentrische Belastung
Exzentrizität

F

Filter	53
Fundament	
Fundamentplatte	10, 23, 39, 47, 56
Fundamenttyp	
Fundamentverdrehung	

G

Geometrie	
Geotechnik	
Geotechnische Nachweise	11, 37, 40
Gleiten	12, 25, 41, 104
Gleitwiderstand	
Grundbewehrung	
Grundbruch	41, 101
Grundbruchwiderstand	11, 12
Grundwasser	

⊿ Dlub

Hauptbewehrung	57
Höhenlage	14
Horizontale Bügel	26, 86, 90

I

Iteration	. 25
к	
Kernfläche	. 43
Klaffende Fuge	. 42
Knoten	8
Köcher	, 26
Köcherbewehrung60	, 95
Köcherfundament 10, 27, 45, 46	, 80
Köcherinnenseite	. 10
Kritischer Rundschnitt	. 48

L

Lagerlasten	
Lagesicherheit (EQU)	33, 40, 104
Langzeit-Lastfaktor	
Lastfall	
Lastkombination	
Lastposition	
Linienlast	
Listenmatten	

М

Materialbibliothek	16
Matte	32
Mindestabmessungen 45, 46, 47, 4	48
Mindestbewehrung	39

Ν

Nachweisdetails	53
Nachweiskriterium	52
Nachweisverfahren	75
Nationaler Anhang	74
Nebenbewehrung	57
Norm	27

0

Obere Plattenbewehrung	59
------------------------	----

Ρ

Parameter β	44
Passiver Erdwiderstand	12
Plattenbewehrung	59
Position	57
Programmaufruf	. 5

R

Regelfall	11
Reibungswinkel	18
Rotieren	64
Rundschnitt	.43

B

S

Schadensfolgeklasse
Schnitt
Schubnachweis 112
Sohlreibungswinkel18
Sohlspannung 19
Stabbewehrung
Stabstahl
Ständig und vorübergehend 34
Staffelung
Stahlliste
Starten von RF/-FUND Pro5
Stütze
Stützenabmessungen übernehmen 22

Т

Teilsicherheitsbeiwert	28
Theorie II. Ordnung	45
Tragwerk (STR)	33

U

Übergreifungslänge	43, 99
Überschüttung	9, 25, 37
Unbewehrtes Fundament	
Untere Plattenbewehrung	56
Ursprungsprofil	14
Ursprungszustand	13

V

Verfahren 2	75
Verfahren 2*	75, 123
Verlegebreite	61
Verschieben	64
Verteilungszahl	108
Vertikale Köcherbügel	93, 95
Vorhandene Bodenpressung	102
Vorlage	26

W

Widerstand gegen Gleite	en 41
-------------------------	-------

Ζ

Zoomen	1
Zulässige Bodenpressung 11, 103	3
Zusätzliche Belastung	5