17 结果
查看结果:

在本教程中,我们想让您熟悉程序RFEM 6的基本功能和操作。 第一部分将介绍如何创建结构模型、荷载、荷载组合,进行结构分析,检查结果以及打印计算书。 本教程将使用欧洲规范作为参考标准。

“应力-应变分析”模块用于钢结构的一般应力分析,通过计算现有的实际应力,然后与构件的极限应力进行比较。 可以计算面和实体的应变,

以及实体、面、线焊缝(仅 RFEM)和杆件的最大应力。 同时还可以记录下每根杆件和每个面的主导内力。 此外,在 RFEM/RSTAB 中还可以对截面或厚度进行自动优化,包括更新调整后的截面和面的厚度。

本手册介绍了 RFEM 6 和 RSTAB 9 的应力-应变分析模块。

使用钢结构设计模块,可以按照不同的设计规范对钢杆件进行设计。 这其中包括截面承载力、稳定性和正常使用极限状态设计。 模型输入和计算结果分析完全集成在有限元软件 RFEM 和 RSTAB 的用户界面中。

本手册介绍了 RFEM 6 和 RSTAB 9 的钢结构设计模块。

在本教程中,我们想让您熟悉程序RFEM 6的基本功能和操作。 在第一部分中,我们定义了模型并进行了结构分析。 具体设计在第二部分进行。 最后,第三部分介绍了根据 EN 1993-1-1 和 CEN 设置的钢杆件设计。

RFEM 6 和 RSTAB 9 中的动力分析可以在多个模块中进行。

  • “模态分析”模块是基本的模块,可以进行杆件、面和实体模型的固有振动分析。 它是所有其他动力模块的前提条件。
  • 使用“反应谱分析”模块,可以在地震分析中使用多振型反应谱方法。
  • 使用“时程分析”模块,您可以对外部激振进行动力分析。
  • 使用 Pushover 分析模块,可以计算结构在地震荷载作用下的最大非线性响应。
  • 谐响应分析模块仍在开发中。

本手册介绍了 RFEM 6 和 RSTAB 9 的动力分析模块。

在本教程中,我们想让您熟悉程序RFEM 6的基本功能和操作。 在第一部分中,我们定义了模型并进行了结构分析。 在第二部分中进行了混凝土设计之后,现在在第三部分中进行钢杆件设计。 AISC 360-16 被用作标准。

在激活砌体设计模块后,专门为计算砌体结构而开发的材料模型会被激活。 通过使用被激活的材料模型可以表现砖和砂浆的非线性行为,并使用有限元法计算砌体结构。

砌体结构的设计验算是基于规范进行的。 内力和变形是根据规范规定的应力-应变曲线计算得出的。

本手册介绍了 RFEM 6 的砌体设计模块。

使用Aluminium Design铝合金设计模块,您可以根据不同的设计标准对铝合金杆件进行设计。 可以进行截面承载力计算、稳定性和正常使用极限状态设计。 模型输入和计算结果分析完全集成在有限元软件 RFEM 和 RSTAB 的用户界面中。

本手册介绍了 RFEM 6 和 RSTAB 9 的Aluminium Design铝合金设计模块。

使用施工阶段分析(CSA) 模块,您可以在 RFEM 6 程序中绘制模型的施工过程图。 通过这种方式,您可以在各个施工阶段添加、删除或调整结构对象。 此外,该模块还可以确定荷载施加的顺序以及在施工阶段如何组合荷载工况。

“结构找形分析”模块可以找到受轴力作用的杆件和张力作用的面模型的最优形状。 其形状由构件轴向力或膜面应力和现有的边界条件之间的稳定平衡形态决定。

生成的带有外力条件的新模型形状可以作为普遍适用的初始状态用于整个结构的进一步计算。