503x
001875
2024-02-27

Dimensionamento de barras de pórticos segundo a AISC 341-22 no RFEM 6

Os três tipos de pórticos de momento (comum, intermédio, especial) estão disponíveis no módulo Dimensionamento de aço do RFEM 6. O resultado do dimensionamento sísmico de acordo com a norma AISC 341-22 é categorizado em duas secções: requisitos das barras e requisitos das ligações.

Detalhes mais aprofundados sobre a entrada de dados da configuração sísmica são abordados num artigo separado, KB 001761 | Dimensionamento sísmico AISC 341 no RFEM 6 .

Requisitos da barra

As seguintes verificações de dimensionamento para barras que fazem parte do sistema resistente a forças sísmicas (SFRS) estão disponíveis no RFEM. As secções listadas referem-se às disposições sísmicas AISC 341-22 [1].

  • Limitações da largura-espessura [Secção D1.1]
  • Contraventamento de estabilidade de vigas - resistência e rigidez necessárias [Secção D1.2a.1(b) para IFM e D1.2b para SMF]
  • Contraventamento de estabilidade de vigas - espaçamento máximo [Secção D1.2a.1(c) para INF e D1.2b para SSF]
  • Contraventamento de estabilidade de vigas nas posições das articulações - resistência necessária [Secção D1.2c.1(b)]
  • Resistência necessária do pilar [secção D1.4a]
  • Relação de esbelteza do pilar para ligação sem contraventamento [Secção E3.4c.2b]

Limites de largura-espessura para os requisitos de ductilidade

As barras no IFM são designadas como barras moderadamente dúcteis de acordo com a Secção E2.5a. As barras no SSF são designadas como barras altamente dúcteis de acordo com a Secção E3.5a.

"Banzo do pilar"

O banzo do pilar SMF tem de satisfazer os requisitos das disposições sísmicas da AISC, secção D1.1 [1] para as barras altamente dúcteis. Esta verificação é apresentada como EQ 1200 no RFEM (Figura 1).

"Alma do pilar"

A relação largura-espessura limite para almas de barras altamente dúcteis é determinada utilizando o caso de carga determinante para a carga axial, conforme estipulado na Secção D1.4a [1]. O caso de carga determinante é baseado em todas as combinações de carga, incluindo a gravidade, apenas CO, CO com carga sísmica padrão e CO com carga sísmica de sobrerresistência. Esta verificação é apresentada na EQ 1100 no RFEM (Figura 2).

Similar aos pilares, as verificações da largura-espessura também são realizadas para as vigas.

Contraventamento de estabilidade de vigas

A resistência e a rigidez necessárias dos contraventamentos de estabilidade encontram-se listadas no separador Contraventamento de estabilidade por barra em "Requisitos sísmicos" (Figura 3). Estes valores podem ser comparados com a resistência e rigidez disponíveis calculadas quando dimensionam as barras de contraventamento que formam um pórtico na viga. Não estão disponíveis detalhes da verificação de dimensionamento (apenas referências).

Existem dois valores diferentes listados para as resistências necessárias. O primeiro valor, Pbr, é aplicável para contraventamentos de estabilidade que estão localizados fora da posição da articulação plástica. Pbr está definido na equação A-6-7 do apêndice 6 da AISC 360 [3]:

O segundo maior valor, Pr, é especificamente para os contraventamentos de estabilidade na posição da articulação plástica. Encontrando-se definido na equação D1-4 da AISC 341 [1] :

A rigidez necessária, βbr, é definida na equação A-6-8 do apêndice 6:

O espaçamento máximo dos contraventamentos de estabilidade tem de cumprir os requisitos da AISC 341-22, Secção D1.2a.1(c) para INF e da Secção D1.2b para SSF.

A verificação do espaçamento máximo é apresentada em conjunto com os outros requisitos da barra em "Relações de dimensionamento de barras". O detalhe da verificação é apresentado na EQ 2100 (Figura 4). O comprimento contraventado Lb, é o comprimento efetivo especificado para encurvadura por flexão-torção (LTB).

Resistência do pilar necessária 

Todos os pilares que fazem parte do sistema resistente às forças sísmicas (SFRS) são obrigados a ser dimensionados com as cargas de sobrerresistência. Em muitos casos, a força axial aumentada não necessita de ser combinada com os momentos de flexão actuais. A opção para negligenciar todos os momentos fletores, cortes e torções nos pilares para o estado limite da sobrerresistência está ativada por defeito. Esta opção pode ser desativada na configuração para sismos.

Para combinações de carga padrão sem sobrerresistência do efeito de carga sísmica, a carga combinada é verificada de acordo com AISC 360-22, Capítulo H.

Para combinações de carga com carga sísmica de sobrerresistência, os capítulos F e H não são verificados quando é ativada a opção para negligenciar todos os momentos de flexão, corte e torção nos pilares para o estado limite da sobrerresistência.
No Exemplo 4.3.2 do manual de sismos [2] , o caso de controlo de ambas as combinações de carga, norma e sobrerresistência, necessita de ser considerado.

Os momentos fletores resultantes de uma carga aplicada entre os pontos de apoio laterais podem contribuir para a encurvadura do pilar. Portanto, estas devem ser consideradas simultaneamente com as cargas axiais ao desativar a opção para negligenciar os momentos.

Relação de esbelteza do pilar para ligação sem contraventamento

Para pilares em SMF sem contraventamento de barra transversal na ligação, a possibilidade para encurvadura fora do plano na ligação deve ser minimizada através da limitação da relação de esbelteza L/r para ser igual ou inferior a 60, de acordo com a Secção E3. 4c.2b [1]. As ligações sem contraventamento ocorrem em casos especiais, como num pórtico de dois pisos sem piso intermédio.

Nos restantes casos, a opção para cumprir este requisito pode ser desativada na configuração para sismos.

Os requisitos da ligação são abordados no artigo KB 001768 | Resistência da ligação de pórtico de acordo com a AISC 341-16 no RFEM 6 .


Autor

Cisca é responsável pelo apoio técnico ao cliente e pelo desenvolvimento de programas para o mercado norte-americano.

Ligações
Referências
  1. AISC (2022). Seismic Provisions for Structural Steel Buildings, AISC 341-22. American Institute of Steel Construction, Chicago.
  2. AISC Seismic Design Manual, 3rd Edition
  3. AISC (2022). Specification for Structural Steel Buildings, ANSI/AISC 360-22. American Institute of Steel Construction, Chicago, August 1.