12 结果
查看结果:

“应力-应变分析”模块用于钢结构的一般应力分析,通过计算现有的实际应力,然后与构件的极限应力进行比较。 RFEM 还会确定应力范围。 此外,还可以计算面和实体的应变。

以及实体、面、线焊缝(仅 RFEM)和杆件的最大应力。 同时还可以记录下每根杆件和每个面的主导内力。 此外,在 RFEM/RSTAB 中还可以对截面或厚度进行自动优化,包括更新调整后的截面和面的厚度。

本手册介绍了 RFEM 6 和 RSTAB 9 的应力-应变分析模块。

通过混凝土设计模块可以根据不同国家规范对混凝土杆件和面进行设计。 可以进行承载能力极限状态和正常使用极限状态设计。 模型输入和计算结果分析完全集成在有限元软件 RFEM 和 RSTAB 的用户界面中。

本手册介绍了 RFEM 6 和 RSTAB 9 的附加模块混凝土设计。 在 RSTAB 中,您只能设计杆件和杆件集,而不能设计面。

在本教程中,我们想让您熟悉程序RFEM 6的基本功能和操作。 在第一部分中,定义了一个模型并进行了结构分析。 第二部分介绍了按照 EN 1992-1-1 和 CEN 设置对板、墙、梁和柱进行混凝土设计。

在本教程中,我们想让您熟悉程序RFEM 6的基本功能和操作。 在第一部分中,我们定义了模型并进行了结构分析。 第二部分是关于楼板、墙、梁和柱的混凝土设计。 ACI 318-19 被用作标准。

使用木结构设计模块,可以根据不同设计标准对木结构杆件和面进行设计。 这其中包括截面承载力,稳定性和正常使用性的验算。 模型输入和计算结果分析完全集成在有限元软件 RFEM 和 RSTAB 的用户界面中。

本手册主要介绍了程序RFEM 6和RSTAB 9的木结构设计模块。

在激活砌体设计模块后,专门为计算砌体结构而开发的材料模型会被激活。 通过使用被激活的材料模型可以表现砖和砂浆的非线性行为,并使用有限元法计算砌体结构。

砌体结构的设计验算是基于规范进行的。 内力和变形是根据规范规定的应力-应变曲线计算得出的。

本手册介绍了 RFEM 6 的砌体设计模块。

RFEM 6 和 RSTAB 9 中的动力分析可以在多个模块中进行。

  • “模态分析”模块是基本的模块,可以进行杆件、面和实体模型的固有振动分析。 它是所有其他动力模块的前提条件。
  • “反应谱分析”模块允许使用多振型反应谱法进行地震分析。
  • 使用“时程分析”模块,您可以对外部激振进行动力分析。
  • 使用 Pushover 分析模块,可以计算结构在地震荷载作用下的最大非线性响应。
  • 谐响应分析模块仍在开发中。

本手册介绍了 RFEM 6 和 RSTAB 9 的动力分析模块。

在本教程中,我们想让您熟悉程序RFEM 6的基本功能和操作。 第一部分定义了模型并对结构进行了分析。 然后在下面的部分中进行了混凝土和钢结构的设计。 该部分将按照欧洲规范 EN 1998-1 以 CEN 的设置对模型进行动力分析。

本手册介绍了网络课堂“在 RFEM 6 中对木结构进行建模与设计”

首先,介绍如何在 RFEM 6 中对四坡屋顶面坡椽进行建模和如何施加荷载,以及根据欧洲规范 5 进行木结构设计。 最后将介绍如何创建计算书以及使用参数和用户自定义脚本。

木结构设计模块手册中详细介绍了模块的所有选项。

本手册介绍了网络研讨会 “在 RFEM 6 和 RSTAB 9 中对钢筋混凝土结构进行建模和设计”.

以建筑天花板为例,展示了如何按照欧洲规范 2 进行钢筋混凝土设计。 此外,还讨论了在打印报告中记录结果。

所有模块选项的说明。

本手册介绍了网络研讨会 “在 RFEM 6 中使用有限元法设计砌体” 的主题。

介绍了如何在 RFEM 6 中对砌体结构进行建模,并使用非线性正交各向异性材料模型进行计算。

本手册介绍了网络研讨会 “在 RFEM 6 中对实体单元进行建模和设计” 的主题。

在该网络研讨会中,我们对一个带螺栓的支架进行了建模。 它解释了如何定义体积之间的接触以及如何进行应力-应变分析。 还考虑了焊缝的使用。