Dimensionamento de cinco tipos de sistemas resistentes a forças sísmicas (SFRS): )
Verificação da ductilidade da relação largura-espessura para almas e banzos
Cálculo da resistência e rigidez necessárias para o contraventamento de estabilidade de vigas
Cálculo do espaçamento máximo para contraventamento de estabilidade de vigas
Cálculo da resistência necessária nas articulações para o contraventamento de estabilidade de vigas
Cálculo da resistência necessária do pilar com a opção de negligenciar todos os momentos fletores, corte e torção para o estado limite de sobrerresistência
Verificação das relações de esbelteza para pilares e contraventamentos
O resultado do dimensionamento sísmico é categorizado em duas secções: requisitos das barras e requisitos das ligações.
Os "Requisitos sísmicos" incluem a resistência à flexão necessária e a resistência ao corte necessária da ligação viga-pilar para pórticos de momento. Estas estão listadas no separador 'Ligação de pórtico de momentos por barra'. Para pórticos reforçados, a resistência à tração necessária da ligação e a resistência à compressão necessária da ligação do contraventamento estão listadas no separador 'Ligação de contraventamento por barra'.
O programa fornece as verificações realizadas em tabelas. Os detalhes de dimensionamento mostram claramente as fórmulas e as referências à norma.
Utilizando o tipo de barra "Amortecedor", pode definir um coeficiente de amortecimento, uma constante de mola e uma massa. Este tipo de barra expande as possibilidades da análise de histórico de tempo.
Do ponto de vista da viscoelasticidade, o tipo de barra "Amortecimento" é similar ao modelo de Kelvin-Voigt, que consiste num elemento de amortecimento e numa mola elástica (ambos ligados em paralelo).
Para diagramas de cálculo, está disponível o tipo de diagrama "2D | Articulação". Estes diagramas de articulações apresentam a resposta da articulação para situações de carga de articulações não lineares.
Para cálculos com várias situações de carga, como é o caso, por exemplo, com a análise pushover e a análise de histórico de tempo, pode avaliar o estado da articulação em cada intervalo de carga.
O módulo Análise modal oferece a opção para aumentar automaticamente os valores próprios procurados até ser alcançado um fator de massa modal efetivo definido. Todas as direções de translação que foram ativadas como massas para a análise modal são tidas em consideração.
Assim, os 90% da massa modal efetiva necessários para o método de espectro de resposta podem ser facilmente calculados.
No módulo Análise de histórico de tempo, estão disponíveis os acelerogramas para o cálculo. Esta extensão permite a análise estrutural dinâmica de diagramas de aceleração-tempo.
Existe uma extensa biblioteca de registos sísmicos à sua disposição, mas também pode introduzir ou importar os seus próprios diagramas. A análise de histórico de tempo é efetuada através da análise modal ou da análise linear implícita de Newmark.
Para uma análise do espectro de resposta de modelos de edifício, pode apresentar os coeficientes de sensibilidade para as direções horizontais por piso.
Estes números permitem interpretar a sensibilidade dos efeitos de estabilidade.
É necessário efetuar a entrada dos diagramas de força-tempo necessários. Estes podem ser combinados em casos de carga ou combinações de cargas do tipo Análise de histórico de tempo | Diagramas de tempo com o carregamento para definir onde e em que direção os diagramas de força-tempo atuam.
A segunda opção é introduzir diagramas de aceleração-tempo que podem ser utilizados em casos de carga do tipo Análise de histórico de tempo | Acelerograma.
Todos os parâmetros de cálculo são especificados na configuração da análise do histórico de tempo. Estes incluem, por exemplo, o tipo de método de análise e o tempo de cálculo máximo.
O método de histórico de tempo é efetuado através de uma análise modal ou da análise linear implícita de Newmark. A análise de histórico de tempo neste módulo está restringida aos sistemas lineares. Mesmo sendo a análise modal um algoritmo rápido, tem de ser utilizado um certo número de valores próprios para assegurar a precisão necessária dos resultados.
A análise implícita de Newmark representa um método muito preciso, independentemente do número de valores próprios utilizados, mas requer um número de intervalos de tempo pequenos suficientes para o cálculo.
Assim que o programa tiver concluído o cálculo, é apresentado um resumo dos resultados. Todas as janelas de resultados estão integradas no programa principal RFEM/RSTAB. Encontra todos os resultados em tabelas, estes podem ser representados para cada intervalo de tempo individual ou como envolvente e ainda tem a opção de representar os resultados graficamente e de os animar.
Os resultados da análise do histórico de tempo podem ser apresentados nos diagramas de cálculo. Todos os resultados são representados em função do tempo. Os valores numéricos podem ser exportados para o MS Excel.
Todas as janelas de resultados e gráficos fazem parte do relatório de impressão do RFEM/RSTAB. Desta forma, é possível garantir uma documentação clara e bem organizada. Além disso, também pode exportar as tabelas para o MS Excel.
A análise pushover é gerida por um tipo de análise introduzido recentemente nas combinações de carga. Aqui tem acesso à seleção da distribuição e direção de carga horizontal, a seleção de uma carga constante, a seleção do espectro de resposta desejado para a determinação do deslocamento alvo e as configurações de análise pushover adaptadas à análise pushover.
Na configuração da análise pushover, é possível modificar o incremento do carregamento horizontal crescente e especificar as condições para parar a análise. Além disso, é possível ajustar facilmente a precisão para a determinação iterativa do deslocamento equivalente.
O que são articulações plásticas? Muito simples – as articulações plásticas segundo a FEMA 356 ajudam-no a realizar curvas pushover. Trata-se de articulações não lineares com valores de cedência predefinidos e critérios de aceitação para barras de aço (capítulo 5 da FEMA 356).
Já descobriu a saída tabular e gráfica de massas em pontos da malha? Bem, este também é um dos resultados da análise modal no RFEM 6. Desta forma, é possível verificar as massas importadas que dependem das várias configurações da análise modal. Estes podem ser exibidos no separador Massas em pontos da malha da tabela de Resultados. A tabela oferece uma visão geral dos seguintes resultados: Massa - direção de translação (mX, mY, mZ ), massa - direção de rotação (mφX, mφY, mφZ ) e a soma de massas. Seria melhor obter uma avaliação gráfica o mais rapidamente possível? As massas também podem ser representadas graficamente em pontos da malha.
Conforme já aprenderam, os resultados de um caso de carga de Análise modal são apresentados no programa após um cálculo bem-sucedido. Die erste Eigenform ist für Sie also sofort grafisch oder animiert zu sehen. Dabei können Sie die Darstellung der Eigenformnormierung komfortabel anpassen. Erledigen Sie das am besten direkt im Ergebnisnavigator, wo Sie zur Visualisierung der Eigenformen eine von vier Optionen auswählen:
Wert des Eigenformvektors uj auf 1 skalieren (berücksichtigt nur die Translationskomponenten)
Auswahl der maximalen Translationskomponente des Eigenvektors und Einstellung auf 1
Betrachtung der gesamten Eigenform (inklusive der Rotationskomponenten), Auswahl des Maximums und Einstellung auf 1
Setzen der modalen Massen mi für jeden Eigenwert auf 1 kg
Ausführlichere Erläuterungen der Normierung der Eigenformen finden Sie hier:
Manual online
.
Deseja considerar outras cargas como massas para além das cargas estáticas? O programa permite isso para cargas de nós, barras, linhas e superfícies. Para tal, é necessário selecionar o tipo de carga "Massa" ao definir a carga de interesse. Defina a massa ou os componentes da massa nas direções X, Y e Z para tais cargas. Para massas nodais, tem a opção adicional de especificar também os momentos de inércia X, Y e Z de forma a modelar pontos de massa mais complexos.
Muitas vezes, é necessário negligenciar as massas. Este é particularmente o caso quando pretende utilizar a saída da análise modal para a análise sísmica. Para tal, são necessários 90% da massa modal efetiva em cada direção para o cálculo. Portanto, pode negligenciar a massa em todos os apoios fixos de nós e linhas. O programa desativa automaticamente as massas associadas por si.
Também é possível selecionar manualmente os objetos cujas massas devem ser negligenciadas para a análise modal. Desta forma, mostramos a última opção na imagem para uma melhor visualização. É feita uma seleção definida pelo utilizador e os objetos com os seus componentes de massa associados são selecionados de forma a negligenciar as massas.
Ao definir os dados de entrada para o caso de carga da análise modal, pode considerar um caso de carga cuja rigidez represente a posição inicial para a análise modal. Como é que se faz isso? Conforme apresentado na imagem, selecione a opção "Considerar estado inicial a partir de". Agora, abra a caixa de diálogo "Configuração do estado inicial" e defina o tipo Rigidez como estado inicial. Neste caso de carga, a partir do qual é considerado o estado inicial, é possível considerar a rigidez do sistema estrutural quando as barras de tração falham. O objetivo de tudo isto: A rigidez deste caso de carga é considerada na análise modal. Desta forma, o utilizador obtém um sistema claramente flexível.
Isto já é possível ver na imagem: As imperfeições também podem ser tidas em consideração ao definir um caso de carga de análise modal. Os tipos de imperfeição que pode utilizar na análise modal são as cargas fictícias de caso de carga, deslocamento inicial através da tabela, deformação estática, coeficiente de comprimento efetivo, modo próprio dinâmico e grupo de casos de imperfeição.
A propósito: As modificações de estrutura podem ser facilmente definidas em casos de carga do tipo Análise modal. Isto permite, por exemplo, ajustar individualmente a rigidez de materiais, secções, barras, superfícies, articulações e apoios. Para alguns módulos de dimensionamento, também é possível alterar a rigidez. Uma vez selecionados os objetos, as suas propriedades de rigidez são adaptadas ao tipo de objeto. Desta forma, pode defini-los em separadores separados.
Deseja analisar a rotura de um objeto (por exemplo, um pilar) na análise modal? Isso também é possível sem problemas. Basta mudar para a janela Modificação da estrutura e desativar os objetos relevantes.
O seu objetivo é determinar o número de formas próprias? O programa oferece dois métodos para isso. Por um lado, é possível definir manualmente o número das formas próprias mais pequenas a serem calculadas. Neste caso, o número de formas próprias disponíveis depende dos graus de liberdade (isto é, do número de pontos de massa livres multiplicados pelo número de direções nas quais as massas atuam). No entanto, está limitado a 9999. Por outro lado, pode definir a frequência natural máxima da forma que o programa determinava as formas próprias automaticamente até atingir a frequência natural definida.
O cálculo está terminado? Os resultados da análise modal estarão disponíveis tanto em gráficos como em tabelas. Apresentar as tabelas de resultados para o caso de carga ou os casos de carga da análise modal. Desta forma, pode ver os valores próprios, as frequências angulares, as frequências naturais e os períodos naturais da estrutura à primeira vista. As massas modais efetivas, os fatores de massa modal e os fatores de participação também são apresentados claramente.
Tem diversas opções disponíveis para definir massas para a análise modal. Enquanto as massas devido ao peso próprio são consideradas automaticamente, pode considerar as cargas e massas diretamente num caso de carga do tipo de análise modal. Necessita de mais opções? Selecione se pretende considerar as cargas totais como massas, componentes de carga na direção global Z ou apenas os componentes de carga na direção da gravidade.
O programa oferece uma opção adicional ou alternativa para a importação de massas: Definição manual de combinações de cargas a partir das quais as massas são consideradas na análise modal. Selecionou uma norma de dimensionamento? Em seguida, pode criar uma situação de dimensionamento com o tipo de combinação Massa sísmica. Assim, o programa calcula automaticamente uma situação de massa para a análise modal de acordo com a norma de dimensionamento preferida. Por outras palavras: O programa cria uma combinação de cargas a partir dos coeficientes de combinação predefinidos para a norma selecionada. Esta contém as massas utilizadas para a análise modal.
Em comparação com o módulo adicional RF-/DYNAM Pro - Natural Vibrations (RFEM 5/RSTAB 8), foram adicionadas as seguintes novas funções ao módulo Análise modal para o RFEM 6 e o RSTAB 9:
Coeficientes de combinação predefinidos para várias normas (EC 8, ASCE 7 etc.)
Negligência opcional de massas (por exemplo, massa de fundações)
Métodos para determinar o número de formas próprias (definido pelo utilizador, automático – para atingir os fatores de massa modal efetivos, automático – para atingir a frequência natural máxima)
Saída de massas modais, massas modais efetivas, fatores de massa modal e fatores de participação
Saída tabular e gráfica de massas em pontos da malha
Opções de escala diferentes para formas próprias no navegador de resultados
Em comparação com o módulo adicional RF-/DYNAM Pro - Equivalent Loads (RFEM 5/RSTAB 8), foram adicionadas as seguintes novas funções ao módulo Análise de espectro de resposta para o RFEM 6/RSTAB 9:
Espectros de resposta de várias normas (EN 1998, DIN 4149, IBC 2012 etc.)
Espectros de resposta definidos pelo utilizador ou a partir de acelerogramas
Abordagem de espectros de resposta com base na direção
Os resultados são armazenados de forma centralizada num caso de carga com níveis subjacentes para garantir a clareza
Os efeitos de torção acidentais podem ser considerados automaticamente
Combinações automáticas das cargas sísmicas com os outros casos de carga para utilização numa situação de dimensionamento acidental
O programa de cálculo estrutural da Dlubal poupa-lhe muito trabalho. Os parâmetros de entrada relevantes para a norma selecionada são sugeridos pelo programa de acordo com as regras. Além disso, pode introduzir os espectros de resposta manualmente.
Os casos de carga do tipo Análise de espectro de resposta definem a direção na qual os espectros de resposta atuam e quais os valores próprios da estrutura que são relevantes para a análise. Na configuração da análise espectral, pode definir detalhes para as regras de combinação, se aplicável, amortecimento e aceleração periódica nula (ZPA).
Sabia que? Para cada valor próprio relevante e cada direção de excitação são geradas separadamente cargas estáticas equivalentes. Estas cargas são guardadas num caso de carga do tipo Análise de espectro de resposta e o RFEM/RSTAB efetua uma análise estática linear.
Os casos de carga do tipo Análise de espectro de resposta contêm as cargas equivalentes geradas. Primeiro, as respostas modais têm de ser sobrepostas com a regra SRSS ou a regra CQC. Neste caso, pode utilizar os resultados com sinal utilizando a forma própria dominante.
De seguida, os componentes direcionais das ações sísmicas são combinados com a regra SRSS ou com a regra 100%/30%.
Consideração automática de massas a partir do peso próprio
Importação direta de massas de casos de carga ou combinações de carga
Definição opcional de massas adicionais (massas de nós, linhas e superfícies, assim como massas de inércia) diretamente nos casos de carga
Negligência opcional de massas (por exemplo, massa de fundações)
Combinação de massas em diferentes casos de carga e combinações de carga
Coeficientes de combinação predefinidos para várias normas (EC 8, SIA 261, ASCE 7,…)
Importação opcional de estados iniciais (por exemplo, para consideração de pré-esforço e imperfeição)
Modificação estrutural
Consideração de apoios ou barras/superfícies/sólidos com falha
Definição de várias análises modais (por exemplo, para analisar diferentes alterações de massas ou rigidezes)
Seleção do tipo de matriz de massa (matriz diagonal, matriz consistente, matriz de unidade), incluindo a especificação definida pelo utilizador dos graus de liberdade de translação e rotação
Métodos para determinar o número de formas próprias (definido pelo utilizador, automático – para atingir os fatores de massa modal efetivos, automático – para atingir a frequência natural máxima – apenas disponível no RSTAB)
Determinação de formas próprias e massas em nós ou pontos da malha de EF
Saída de valores próprios, frequência angular, frequência natural e período natural
Saída de massas modais, massas modais efetivas, fatores de massa modal e fatores de participação
Saída tabular e gráfica de massas em pontos da malha
Visualização e animação de formas próprias
Opções de escala diferentes para formas próprias
Documentação de resultados numéricos e gráficos no relatório de impressão
Na configuração da análise modal, tem de introduzir todos os dados que são necessários para a determinação das frequências naturais. Estes são, por exemplo, formas de massa e solucionadores de valores próprios.
O módulo Análise modal determina os valores próprios mais baixos da estrutura. Ajusta o número de valores próprios ou deixa-os ser determinados automaticamente. Assim, deve atingir os factores de massa modal efetivos ou as frequências naturais máximas. As massas são importadas diretamente dos casos de carga e das combinações de cargas. Neste caso, tem a opção de considerar a massa total, os componentes de carga na direção global Z ou apenas o componente de carga na direção da gravidade.
Pode definir manualmente massas adicionais em nós, linhas, barras e superfícies. Além disso, é possível influenciar a matriz de rigidez ao importar forças normais ou alterações de rigidez de um caso de carga ou de uma combinação de cargas.