公式 3

如果在窗口 1.6 的“钢筋”中选择了“设计现有的钢筋”选项,那么 RFEM 的 RF-CONCRETE Members 或者 RSTAB 的 CONCRETE Members 会自动为用户提供钢筋建议。

使用模块 RF-CONCRETE Members 可以按照美国规范 ACI 318-14 对混凝土柱进行设计。 出于安全考虑,准确地设计混凝土柱的抗剪和纵向钢筋非常重要。 下面的文章将逐步介绍在 RF-CONCRETE Members 中使用解析方程式按照规范 ACI 318-14 进行钢筋设计的方法,包括所需的纵向钢筋、毛截面面积和连接尺寸/间距。

使用 RF-CONCRETE Members 可以按照 ACI 318-14 进行混凝土梁的设计。 准确地设计混凝土梁的受拉、受压和受剪钢筋是出于安全考虑的重要因素。 下面的文章将按照 ACI 318-14 标准使用逐步的解析方程来确定 RF-CONCRETE Members 中的配筋设计,包括弯矩强度、抗剪强度和所需配筋。 所分析的双钢筋混凝土梁实例包括抗剪钢筋,将在承载能力极限状态 (ULS) 下进行设计。

对于钢筋混凝土结构,其结构性能受二阶分析影响显着,欧洲规范2根据二阶分析(5.8.6)提供了基于非线性确定内力的一般方法,基于名义曲率(5.8.8)的近似方法。
这篇文章的目的是根据欧洲规范 2 中的一根钢筋混凝土细长柱进行设计。
这篇文章的目的是根据欧洲规范 2 中的一根钢筋混凝土细长柱进行设计。

“材料非线性”模块包括了混凝土结构构件的 | “各向异性损伤”材料模型。 使用该材料模型,可以考虑杆件、面和实体的混凝土损伤。
对于应力-应变图,您可以有三种方式来定义,它们分别是通过表格定义,使用参数生成,以及使用规范中的预定义参数。 此外,还可以考虑拉伸刚化效应。
对于钢筋,可以选择两种非线性材料模型, | 它们是“各向同性 | 塑性(杆件)”和 | “各向同性 | 非线性弹性(杆件)”。
此外,还可以通过最近发布的“静力分析 | 徐变与收缩(线性)”分析类型 | 来考虑徐变和收缩效应。 徐变通过增加混凝土的变形(通过一个因子 1+phi 拉伸应力-应变曲线)来考虑,而收缩则通过在分析前就给混凝土施加一个初始的变形(预应变)来考虑。 如果需要进行更精确的分析,您可以使用“时变分析(TDA)”的模块。

在混凝土设计中,可以根据不同设计状况在表格中显示配筋结果。