O módulo Dimensionamento de betão permite realizar verificações sísmicas para barras de betão armado segundo o EC 8. Isso inclui, entre outras, as seguintes funções:
Parâmetros da verificação sísmica
Distinção entre as classes de ductilidade DCL, DCM, DCH
Possibilidade de transferir o coeficiente de comportamento da análise dinâmica
Verificação do valor limite para o coeficiente de comportamento
Verificações de capacidade "Strong column – weak beam"
Regras de dimensionamento para verificação do fator de ductilidade em curvatura
A análise pushover é gerida por um tipo de análise introduzido recentemente nas combinações de carga. Aqui tem acesso à seleção da distribuição e direção de carga horizontal, a seleção de uma carga constante, a seleção do espectro de resposta desejado para a determinação do deslocamento alvo e as configurações de análise pushover adaptadas à análise pushover.
Na configuração da análise pushover, é possível modificar o incremento do carregamento horizontal crescente e especificar as condições para parar a análise. Além disso, é possível ajustar facilmente a precisão para a determinação iterativa do deslocamento equivalente.
Consideração do comportamento de componente não linear utilizando articulações de plástico padrão para aço (FEMA 356, EN 1998-3) e comportamento de material não linear (alvenaria, aço - bilinear, curvas de trabalho definidas pelo utilizador)
Importação direta de massas de casos ou combinações de carga para aplicação de cargas verticais constantes
Especificações definidas pelo utilizador para a consideração de cargas horizontais (padronizadas para uma forma própria ou uniformemente distribuídas sobre a altura das massas)
Determinação de uma curva pushover com critério limite selecionável para o cálculo (colapso ou deformação limite)
Transformação da curva pushover em espectro de capacidade (formato ADRS, sistema de um grau de liberdade)
Bilinearização do espectro de capacidade de acordo com EN 1998‑1:2010 + A1:2013
Transformação do espectro de resposta aplicado no espectro necessário (formato ADRS)
Determinação do deslocamento objetivo de acordo com o EC 8 (método N2 de acordo com Fajfar 2000)
Comparação gráfica da capacidade e do espectro necessário
Avaliação gráfica dos critérios de aceitação de articulações plásticas predefinidas
Apresentação dos resultados dos valores utilizados no cálculo iterativo do deslocamento de destino
Acesso a todos os resultados da análise estrutural nos níveis de carga individuais
Durante o cálculo, a carga horizontal selecionada é aumentada por incrementos de carga. É realizada uma análise estática não linear para cada intervalo de carga até atingir a condição limite especificada.
Os resultados da análise pushover são vastos. Por um lado, a estrutura é analisada quanto ao seu comportamento de deformação. Isto pode ser representado por uma linha de força-deformação do sistema (uma curva de capacidade). Por outro lado, o efeito de espectro de resposta pode ser apresentado na visualização ADRS (espectro de resposta de aceleração-deslocamento). O deslocamento de destino é determinado automaticamente no programa com base nestes dois resultados. O processo pode ser avaliado graficamente e em tabelas.
Os critérios de aceitação individuais podem então ser avaliados graficamente (para o próximo incremento de carga do deslocamento fixado, mas também para todos os outros incrementos de carga). Os resultados da análise estática também estão disponíveis para os intervalos de tempo individuais.
Já descobriu a saída tabular e gráfica de massas em pontos da malha? Bem, este também é um dos resultados da análise modal no RFEM 6. Desta forma, é possível verificar as massas importadas que dependem das várias configurações da análise modal. Estes podem ser exibidos no separador Massas em pontos da malha da tabela de Resultados. A tabela oferece uma visão geral dos seguintes resultados: Massa - direção de translação (mX, mY, mZ ), massa - direção de rotação (mφX, mφY, mφZ ) e a soma de massas. Seria melhor obter uma avaliação gráfica o mais rapidamente possível? As massas também podem ser representadas graficamente em pontos da malha.
Conforme já aprenderam, os resultados de um caso de carga de Análise modal são apresentados no programa após um cálculo bem-sucedido. Die erste Eigenform ist für Sie also sofort grafisch oder animiert zu sehen. Dabei können Sie die Darstellung der Eigenformnormierung komfortabel anpassen. Erledigen Sie das am besten direkt im Ergebnisnavigator, wo Sie zur Visualisierung der Eigenformen eine von vier Optionen auswählen:
Wert des Eigenformvektors uj auf 1 skalieren (berücksichtigt nur die Translationskomponenten)
Auswahl der maximalen Translationskomponente des Eigenvektors und Einstellung auf 1
Betrachtung der gesamten Eigenform (inklusive der Rotationskomponenten), Auswahl des Maximums und Einstellung auf 1
Setzen der modalen Massen mi für jeden Eigenwert auf 1 kg
Ausführlichere Erläuterungen der Normierung der Eigenformen finden Sie hier:
Manual online
.
Deseja considerar outras cargas como massas para além das cargas estáticas? O programa permite isso para cargas de nós, barras, linhas e superfícies. Para tal, é necessário selecionar o tipo de carga "Massa" ao definir a carga de interesse. Defina a massa ou os componentes da massa nas direções X, Y e Z para tais cargas. Para massas nodais, tem a opção adicional de especificar também os momentos de inércia X, Y e Z de forma a modelar pontos de massa mais complexos.
Muitas vezes, é necessário negligenciar as massas. Este é particularmente o caso quando pretende utilizar a saída da análise modal para a análise sísmica. Para tal, são necessários 90% da massa modal efetiva em cada direção para o cálculo. Portanto, pode negligenciar a massa em todos os apoios fixos de nós e linhas. O programa desativa automaticamente as massas associadas por si.
Também é possível selecionar manualmente os objetos cujas massas devem ser negligenciadas para a análise modal. Desta forma, mostramos a última opção na imagem para uma melhor visualização. É feita uma seleção definida pelo utilizador e os objetos com os seus componentes de massa associados são selecionados de forma a negligenciar as massas.
Ao definir os dados de entrada para o caso de carga da análise modal, pode considerar um caso de carga cuja rigidez represente a posição inicial para a análise modal. Como é que se faz isso? Conforme apresentado na imagem, selecione a opção "Considerar estado inicial a partir de". Agora, abra a caixa de diálogo "Configuração do estado inicial" e defina o tipo Rigidez como estado inicial. Neste caso de carga, a partir do qual é considerado o estado inicial, é possível considerar a rigidez do sistema estrutural quando as barras de tração falham. O objetivo de tudo isto: A rigidez deste caso de carga é considerada na análise modal. Desta forma, o utilizador obtém um sistema claramente flexível.
Isto já é possível ver na imagem: As imperfeições também podem ser tidas em consideração ao definir um caso de carga de análise modal. Os tipos de imperfeição que pode utilizar na análise modal são as cargas fictícias de caso de carga, deslocamento inicial através da tabela, deformação estática, coeficiente de comprimento efetivo, modo próprio dinâmico e grupo de casos de imperfeição.
A propósito: As modificações de estrutura podem ser facilmente definidas em casos de carga do tipo Análise modal. Isto permite, por exemplo, ajustar individualmente a rigidez de materiais, secções, barras, superfícies, articulações e apoios. Para alguns módulos de dimensionamento, também é possível alterar a rigidez. Uma vez selecionados os objetos, as suas propriedades de rigidez são adaptadas ao tipo de objeto. Desta forma, pode defini-los em separadores separados.
Deseja analisar a rotura de um objeto (por exemplo, um pilar) na análise modal? Isso também é possível sem problemas. Basta mudar para a janela Modificação da estrutura e desativar os objetos relevantes.
O seu objetivo é determinar o número de formas próprias? O programa oferece dois métodos para isso. Por um lado, é possível definir manualmente o número das formas próprias mais pequenas a serem calculadas. Neste caso, o número de formas próprias disponíveis depende dos graus de liberdade (isto é, do número de pontos de massa livres multiplicados pelo número de direções nas quais as massas atuam). No entanto, está limitado a 9999. Por outro lado, pode definir a frequência natural máxima da forma que o programa determinava as formas próprias automaticamente até atingir a frequência natural definida.
O cálculo está terminado? Os resultados da análise modal estarão disponíveis tanto em gráficos como em tabelas. Apresentar as tabelas de resultados para o caso de carga ou os casos de carga da análise modal. Desta forma, pode ver os valores próprios, as frequências angulares, as frequências naturais e os períodos naturais da estrutura à primeira vista. As massas modais efetivas, os fatores de massa modal e os fatores de participação também são apresentados claramente.
Tem diversas opções disponíveis para definir massas para a análise modal. Enquanto as massas devido ao peso próprio são consideradas automaticamente, pode considerar as cargas e massas diretamente num caso de carga do tipo de análise modal. Necessita de mais opções? Selecione se pretende considerar as cargas totais como massas, componentes de carga na direção global Z ou apenas os componentes de carga na direção da gravidade.
O programa oferece uma opção adicional ou alternativa para a importação de massas: Definição manual de combinações de cargas a partir das quais as massas são consideradas na análise modal. Selecionou uma norma de dimensionamento? Em seguida, pode criar uma situação de dimensionamento com o tipo de combinação Massa sísmica. Assim, o programa calcula automaticamente uma situação de massa para a análise modal de acordo com a norma de dimensionamento preferida. Por outras palavras: O programa cria uma combinação de cargas a partir dos coeficientes de combinação predefinidos para a norma selecionada. Esta contém as massas utilizadas para a análise modal.
O programa de cálculo estrutural da Dlubal poupa-lhe muito trabalho. Os parâmetros de entrada relevantes para a norma selecionada são sugeridos pelo programa de acordo com as regras. Além disso, pode introduzir os espectros de resposta manualmente.
Os casos de carga do tipo Análise de espectro de resposta definem a direção na qual os espectros de resposta atuam e quais os valores próprios da estrutura que são relevantes para a análise. Na configuração da análise espectral, pode definir detalhes para as regras de combinação, se aplicável, amortecimento e aceleração periódica nula (ZPA).
Sabia que? Para cada valor próprio relevante e cada direção de excitação são geradas separadamente cargas estáticas equivalentes. Estas cargas são guardadas num caso de carga do tipo Análise de espectro de resposta e o RFEM/RSTAB efetua uma análise estática linear.
Os casos de carga do tipo Análise de espectro de resposta contêm as cargas equivalentes geradas. Primeiro, as respostas modais têm de ser sobrepostas com a regra SRSS ou a regra CQC. Neste caso, pode utilizar os resultados com sinal utilizando a forma própria dominante.
De seguida, os componentes direcionais das ações sísmicas são combinados com a regra SRSS ou com a regra 100%/30%.
Consideração automática de massas a partir do peso próprio
Importação direta de massas de casos de carga ou combinações de carga
Definição opcional de massas adicionais (massas de nós, linhas e superfícies, assim como massas de inércia) diretamente nos casos de carga
Negligência opcional de massas (por exemplo, massa de fundações)
Combinação de massas em diferentes casos de carga e combinações de carga
Coeficientes de combinação predefinidos para várias normas (EC 8, SIA 261, ASCE 7,…)
Importação opcional de estados iniciais (por exemplo, para consideração de pré-esforço e imperfeição)
Modificação estrutural
Consideração de apoios ou barras/superfícies/sólidos com falha
Definição de várias análises modais (por exemplo, para analisar diferentes alterações de massas ou rigidezes)
Seleção do tipo de matriz de massa (matriz diagonal, matriz consistente, matriz de unidade), incluindo a especificação definida pelo utilizador dos graus de liberdade de translação e rotação
Métodos para determinar o número de formas próprias (definido pelo utilizador, automático – para atingir os fatores de massa modal efetivos, automático – para atingir a frequência natural máxima – apenas disponível no RSTAB)
Determinação de formas próprias e massas em nós ou pontos da malha de EF
Saída de valores próprios, frequência angular, frequência natural e período natural
Saída de massas modais, massas modais efetivas, fatores de massa modal e fatores de participação
Saída tabular e gráfica de massas em pontos da malha
Visualização e animação de formas próprias
Opções de escala diferentes para formas próprias
Documentação de resultados numéricos e gráficos no relatório de impressão
Na configuração da análise modal, tem de introduzir todos os dados que são necessários para a determinação das frequências naturais. Estes são, por exemplo, formas de massa e solucionadores de valores próprios.
O módulo Análise modal determina os valores próprios mais baixos da estrutura. Ajusta o número de valores próprios ou deixa-os ser determinados automaticamente. Assim, deve atingir os factores de massa modal efetivos ou as frequências naturais máximas. As massas são importadas diretamente dos casos de carga e das combinações de cargas. Neste caso, tem a opção de considerar a massa total, os componentes de carga na direção global Z ou apenas o componente de carga na direção da gravidade.
Pode definir manualmente massas adicionais em nós, linhas, barras e superfícies. Além disso, é possível influenciar a matriz de rigidez ao importar forças normais ou alterações de rigidez de um caso de carga ou de uma combinação de cargas.
Assim que o programa concluir o cálculo, os valores próprios, as frequências e os períodos naturais são listados. Estas janelas de resultados estão integradas no programa principal RFEM/RSTAB. Encontrará todos os modos próprios da estrutura em forma de tabela e também pode representá-los graficamente e animá-los.
Todas as janelas de resultados e gráficos fazem parte do relatório de impressão do RFEM/RSTAB. Desta forma, é possível garantir uma documentação clara e bem organizada. Além disso, também pode exportar as tabelas para o MS Excel.
Como o módulo RF‑/DYNAM Pro está integrado no RFEM ou no RSTAB, é possível integrar resultados numéricos, assim como gráficos do RF‑/DYNAM Pro - Nonlinear Time History, no relatório de impressão global. Da mesma maneira, todas as opções de visualização gráfica do RFEM e do RSTAB estão disponíveis. Os resultados da análise de histórico de tempo são mostrados num diagrama de histórico de tempo.
Todos os resultados são representados em função do tempo. Os valores numéricos podem ser exportados para o MS Excel. As combinações de resultados podem ser exportadas selecionando os resultados dos intervalos de tempo individuais ou filtrando os resultados mais desfavoráveis de todos os intervalos de tempo.
Cálculo no RFEM A análise não linear de histórico de tempo é efetuada com a análise implícita de Newmark ou a análise explícita. Ambos são métodos de integração de tempo diretos. A análise implícita requer pequenos intervalos de tempo para proporcionar resultados com precisão. A análise explícita determina o intervalo de tempo necessário automaticamente para garantir a estabilidade da solução. A análise explícita é adequada para a análise de excitações pequenas, tais como excitações de impulsos ou explosões.
Cálculo no RSTAB A análise não linear de histórico de tempo é efetuada com a análise explícita. Este é um método de integração de tempo direto e a determinação do intervalo de tempo necessário é automática para garantir a estabilidade da solução.
O RF-/DYNAM Pro - Nonlinear Time History está integrado na estrutura do módulo RF‑/DYNAM Pro - Forced Vibrations e é expandido através de dois métodos de análise não-lineares (no RSTAB só um método de análise).
Os diagramas força-tempo podem ser introduzidos pelo utilizador como transitórios, periódicos ou em função do tempo. Os casos de carga dinâmicos combinam os diagramas de tempo com os casos de carga estáticos, o que dá muita flexibilidade. No seguimento, é possível definir intervalos de tempo para o cálculo, o amortecimento estrutural e as opções de exportação nos casos de carga dinâmicos.
Diagramas de tempo definidos pelo utilizador em função do tempo, na forma de tabelas ou como cargas harmónicas
Combinação dos diagramas de tempo com casos ou combinações de cargas do RFEM/RSTAB (isto permite a definição de cargas de nós, barras e superfícies, assim como cargas livres e geradas, variáveis em função do tempo)
Possibilidade de combinar várias funções de excitação independentes
Análise não linear de histórico de tempo com a análise implícita de Newmarks (só no RFEM) ou a análise explícita
Amortecimento estrutural definido pelos coeficientes de amortecimento de Rayleigh
Importação direta de deformações iniciais de um caso ou combinação de cargas (só no RFEM)
Alterações de rigidez como condições iniciais, por exemplo, efeito de força axial, barras desativadas (só no RSTAB)
Representação gráfica de resultados num diagrama de histórico de tempo
Exportação de resultados em intervalos de tempo definidos pelo utilizador ou como envolvente
Espectros de resposta de acordo com diferentes normas
Encontram-se implementadas as seguintes normas:
EN 1998-1:2010 + A1:2013 (União Europeia)
DIN 4149:1981-04 (Alemanha)
DIN 4149:2005-04 (Alemanha)
IBC 2000 (EUA)
IBC 2009-ASCE/SEI 7-05 (EUA)
IBC 2012/15 - ASCE/SEI 7-10 (EUA)
IBC 2018 - ASCE/SEI 7-16 (EUA)
ÖNORM B 4015:2007-02 (Áustria)
NTC 2018 (Itália)
NCSE-02 (Espanha)
SIA 261/1:2003 (Suíça)
SIA 261/1:2014 (Suíça)
SIA 261/1: 2020 (Suíça)
O.G. 23089 + O.G. 23390 (Turquia)
SANS 10160‑4 2010 (África do Sul)
SBC 301:2007 (Arábia Saudita)
GB 50011 - 2001 (China)
GB 50011 - 2010 (China)
NBC 2015 (Canadá)
DTR B C 2-48 (Argélia)
DTR RPA99 (Argélia)
CFE Sismo 08 (México)
CIRSOC 103 (Argentina)
NSR - 10 (Colômbia)
IS 1893:2002 (Índia)
AS1170.4 (Austrália)
NCh 433 1996 (Chile)
Estão disponíveis os seguintes anexos nacionais de acordo com a EN 1998-1:
DIN EN 1998-1/NA:2011-01 (Alemanha)
ÖNORM EN 1991-1-1:2011-09 (Áustria)
NBN - ENV 1998-1-1: 2002 NAD-E/N/F (Bélgica)
ČSN EN 1998-1/NA:2007 (República Checa)
NF EN 1998-1-1/NA:2014-09 (França)
UNI-EN 1991-1-1/NA:2007 (Itália)
NP EN 1998-1/NA:2009 (Portugal)
SR EN 1998-1/NA:2004 (Roménia)
STN EN 1998-1/NA:2008 (Eslováquia)
SIST EN 1998-1:2005/A101:2006 (Eslovénia)
CYS EN 1998-1/NA:2004 (Chipre)
NA to BS EN 1998-1:2004:2008 (Reino Unido)
NS-EN 1998-1:2004+A1:2013/NA:2014 (Noruega)
Espectros de resposta definidos pelo utilizador
Abordagem de espectros de resposta com base na direção
As formas próprias relevantes para o espectro de resposta podem ser selecionadas manual ou automaticamente (pode ser aplicada a regra dos 5% do Eurocódigo 8)
As cargas estáticas equivalentes geradas são exportadas para os casos de carga, separadamente para cada contribuição modal, bem como para cada direção
Combinação de resultados através de sobreposição modal (regra SRSS ou CQC) e através de sobreposição da direção (regra SRSS ou 100%/30%)
Os resultados com sinal atribuídos utilizando a forma própria dominante podem ser visualizados.
Para cada valor próprio relevante e cada direção de excitação são geradas separadamente cargas estáticas equivalentes. Estas são exportadas para casos de carga estáticos e é efetuada uma análise estática linear no RFEM/RSTAB.
Espectros de resposta de várias normas (EN 1998, DIN 4149, IBC 2012 etc.)
Espectros de resposta definidos pelo utilizador ou a partir de acelerogramas
Abordagem de espectros de resposta com base na direção
As formas próprias relevantes para o espectro de resposta podem ser selecionadas manual ou automaticamente (pode ser aplicada a regra dos 5% do Eurocódigo 8)
Combinação de resultados através de sobreposição modal (regra SRSS ou CQC) e através de sobreposição da direção (regra SRSS ou 100%/30%)