No módulo Análise geotécnica, agora está disponível o tipo de barra "Estaca" incorporada no sólido do solo. Para a estaca, foram criados tipos de resistência de estaca. Estes definem os parâmetros para a resistência do atrito de revestimento e da pressão de pico da estaca.
A estaca é depois integrada no sólido do solo adjacente tendo em consideração as características de resistência resultantes dos parâmetros do atrito de revestimento e da pressão de pico.
No módulo Ligações de aço, pode utilizar não apenas os tipos de barra habituais 'Viga', 'Treliça' etc., mas também o tipo de barra 'Viga de resultados' , bem como secções de elementos de superfície. Para a barra resultante, deve ser selecionada uma secção adequada e as aberturas de barra devem ser definidas posteriormente através do editor de barra.
No Navegador – Resultados, pode selecionar as situações de dimensionamento para as quais pretende que os resultados do módulo sejam apresentados graficamente.
Após o cálculo, irá receber um e-mail com uma ligação para descarregar o ficheiro calculado. Os ficheiros grandes são compactados em um arquivo ZIP. Os ficheiros mais pequenos podem ser diretamente descarregados.
Como alternativa, existe uma ligação para o ficheiro calculado na Extranet.
O ficheiro descarregado é um ficheiro RFEM comum e pode ser utilizado como normal para processamento adicional.
O módulo Ligações de aço permite classificar as rigidezes das ligações.
Além da rigidez inicial, a tabela também apresenta os valores limite para ligações articuladas e rígidas para os esforços internos selecionados N, My e/ou Mz. A classificação resultante é então apresentada como "articulado", "semirrígido" ou "rígido".
A rigidez inicial Sj,ini é um parâmetro decisivo para avaliar se uma ligação pode ser caracterizada como rígida, não rígida ou articulada.
No módulo "Ligações de aço", é possível calcular a rigidez inicial Sj,ini de acordo com o Eurocódigo (EN 1993-1-8, Secção 5.2.2) e a AISC (AISC 360-16 Cl. E3.4) em relação aos esforços internos N, My e/ou Mz.
A transferência automática opcional das rigidezes iniciais permite uma transferência direta como rigidez de articulação de extremidade de barra no RFEM. Em seguida, toda a estrutura é recalculada e os esforços internos resultantes são adotados automaticamente como cargas no cálculo e dimensionamento dos modelos de ligação.
Este processo de iteração automatizado elimina a necessidade de exportar e importar dados manualmente, reduzindo a quantidade de trabalho e minimizando possíveis fontes de erro.
As secções resultantes podem ser avaliadas graficamente para o dimensionamento de superfícies de madeira. Isto pode ser feito no gráfico do RFEM e, por outro lado, na janela do histórico de resultados. As secções podem ser colocadas em qualquer ponto para os resultados do dimensionamento serem avaliados em detalhe.
Certifique-se de que a definição dos comprimentos efetivos no módulo de dimensionamento de alumínio é um pré-requisito essencial para a análise de estabilidade. Para fazer isso, defina os apoios de nó e os coeficientes de comprimento efetivo na caixa de diálogo de entrada. Deseja documentar claramente os apoios de nó e os segmentos resultantes com o coeficiente de comprimento efetivo associado? Para verificar os dados de entrada, o ideal é utilizar a janela de trabalho do RFEM/RSTAB na visualização gráfica. Isso significa que é possível compreender o dimensionamento a qualquer momento sem muito esforço.
Já lhe aconteceu? O utilizador pode definir individualmente os comprimentos de referência a serem considerados no cálculo do valor limite da deformação e os segmentos a serem verificados, dependendo da direção. Para isso, defina os apoios de cálculo nos nós intermédios de uma barra e atribua-os à respetiva direção para a análise de deformação. Nos segmentos resultantes, também é possível definir uma contra flecha para cada direção e segmento.
O módulo Torção com empenamento (7 graus de liberdade) oferece-lhe várias opções. Por exemplo, pode realizar o cálculo de estruturas de barras e pórticos no RFEM e no RSTAB considerando o empenamento da secção. Pode considerar os esforços internos resultantes (N, Vu, Vv, Mt,pri, Mt,sec, Mu, Mv, Mω) na verificação da tensão equivalente do dimensionamento de aço. Nota: Esta função ainda não está disponível para as normas de dimensionamento AISC 360-16 e GB 50017.
Deseja realizar uma análise de estabilidade no módulo Dimensionamento de aço? É absolutamente necessário definir os comprimentos efetivos. Para isso, é necessário definir os apoios nodais e os coeficientes de comprimento efetivo na caixa de diálogo. Para uma documentação fácil e uma verificação compreensível das entradas, também é possível representar graficamente os apoios nodais e os segmentos resultantes na janela de trabalho do RFEM/RSTAB com o correspondente fator de comprimento efetivo.
Quando inicia a análise no RFEM ou RSTAB, o utilizador aciona um processo de processamento em lote. Isso coloca todas as definições relativas a barras, superfícies e sólidos do modelo rodadas com todos os coeficientes relevantes no túnel de vento numérico do RWIND Basic. Além disso, inicia a análise CFD e devolve as pressões de superfície resultantes para um intervalo de tempo selecionado como cargas de nó da rede de EF ou cargas de barra nos respetivos casos de carga do RFEM ou do RSTAB.
Estes casos de carga com cargas do RWIND Basic podem ser calculados. Também é possível combiná-los com outras cargas em Combinações de cargas e Combinações de resultados.
No RFEM, existem novos tipos de modelo úteis para si:
2D | XZ | 3D
2D | XY | 3D
1D | X | 3D
Estes tipos de modelo permitem-lhe a modelação num ambiente 1D ou 2D (com rotação de secção opcional em todas as direções), mas uma aplicação de carga tridimensional e os esforços internos 3D resultantes.
Fique sempre de olho nos seus resultados. Além dos casos de carga resultantes no RFEM ou RSTAB (ver abaixo), os resultados da análise aerodinâmica no RWIND 2 representam o problema de fluxo como um todo:
Pressão na superfície do corpo
Campo de pressão em torno da geometria do corpo
Campo de velocidade em torno da geometria do corpo
Vetores de velocidade em torno da geometria do corpo
Linhas de fluxo em torno da geometria do corpo
Forças em corpos com forma de barra, originalmente concebidos a partir de elementos de barra
Diagrama de convergência
Direção e tamanho da resistência do fluxo dos corpos definidos
Estes resultados são apresentados no ambiente do RWIND 2 e avaliados graficamente. Os resultados do fluxo em torno da geometria do corpo na representação geral são um pouco confusos, mas o programa tem uma solução para isso. Para uma disposição clara dos resultados, são exibidos planos de secção com mobilidade livre para a apresentação separada dos "resultados de sólido" num plano. Da mesma maneira, no resultado ramificado das linhas de fluxo em 3D, o programa apresenta uma representação animada das linhas ou partículas móveis para além da representação estrutural. Esta opção ajuda a representar o fluxo de vento como um efeito dinâmico. Pode exportar todos os resultados como imagem ou, especialmente para os resultados animados, como vídeo.
O cálculo não linear adota a geometria real da malha das componentes de superfícies planas, fletidas, simplesmente curvadas ou duplamente curvadas do padrão de corte selecionado e aplaina esses componentes de superfície através da minimização da energia de distorção, assumindo o comportamento de material definido.
De uma forma simplificada, este método tenta comprimir a geometria da malha numa prensa, considerando um contacto sem atrito e procurando um estado, no qual as tensões devido ao aplainamento do componente no plano estão em equilíbrio. Desta maneira, é alcançada a energia mínima e a precisão otimizada do padrão de corte. A compensação para a trama e a urdidura, assim como a compensação para as linhas de contorno são consideradas. Depois, as tolerâncias definidas nas linhas de contorno são aplicadas à geometria da superfície plana resultante.
Funções:
Minimização da energia de distorção no processo de aplainamento para obtenção de padrões de corte com muita precisão
Aplicável a praticamente todas as disposições de malha
Deteção de definições de padrões de corte adjacentes para manutenção dos mesmos comprimentos
Para a verificação da segurança à rotura por flexão, são analisadas as posições determinantes do pilar em relação à força axial e aos momentos. Além disso, são também analisados os pontos com os valores extremos das forças de corte para a verificação da resistência ao corte. Ao calcular, o módulo analisa se o dimensionamento padrão é suficiente ou se o pilar com os momentos tem de ser dimensionado pela teoria de segunda ordem. A determinação destes momentos baseia-se nas especificações introduzidas anteriormente. O cálculo está subdividido em quatro partes:
Processos de cálculo independentes da carga
Determinação iterativa do carregamento determinante com consideração de uma armadura necessária variável
Determinação da armadura existente para os esforços internos determinantes
Determinação da segurança para todos os esforços internos atuantes com consideração da armadura existente
O programa fornece assim uma solução apropriada a partir de uma proposta de armadura otimizada e dos esforços internos daí resultantes.
A entrada de dados da geometria ocorre como nos outros programas da família de RX-TIMBER, através de modelos. Com a seleção do tipo da forma da cobertura, é definida a geometria base, a qual depois pode ser ajustada pelo utilizador. Como material, pode ser selecionada numa biblioteca a classe de madeira desejada. Todas as classes de materiais especificadas na EN 1995-1-1 e nos anexos nacionais selecionados estão disponíveis para madeira laminada colada, frondosa e conífera. Existe ainda a possibilidade de gerar uma classe de resistência com parâmetros de material definidos pelo utilizador e assim expandir a biblioteca de materiais.
Como em contraventamentos de reforço também são utilizadas secções de aço, estão integradas na base de dados os tipos de aço mais frequentes. Por isso, para a entrada de secções, encontram-se igualmente disponíveis perfis laminados e soldados. As rigidezes de elementos de ligação podem ser consideradas na tabela 1.5 Ligações como rigidezes de molas de translação ou rotação. O programa trata estas rigidezes com uma rigidez dividida pelo coeficiente de segurança parcial para o dimensionamento do estado limite último e com um valor médio da rigidez para dimensionamento do estado limite de utilização. O carregamento pode ser introduzido diretamente como uma carga lateral (carga lateral equivalente), resultante de um dimensionamento de treliça.
O vento é aplicado automaticamente às quatro faces da estrutura. Adicionalmente, podem ser especificadas cargas definidas pelo utilizador, por exemplo, cargas concentradas de pilares (carga de encurvadura). De acordo com as cargas geradas, o programa cria automaticamente no fundo as combinações para o estado limite último, estado limite de utilização e proteção contra incêndio. As combinações geradas podem ser analisadas e, se necessário, ajustadas pelo utilizador.
Estão à disposição três possibilidades para reduzir o número de combinações. Os dois primeiros procedimentos apenas estão disponíveis para a geração de combinações de carga mas não para as combinações de resultados.
Com a primeira opção é possível analisar de forma automática todos os casos de carga resultantes (forças internas, deformações etc.) dos elementos selecionados. De seguida, o programa gera apenas aquelas combinações que incluem os casos de carga que produzem um máximo e um mínimo. Além disso, pode ser definido um número máximo de casos de carga relevantes, ou podem ser negligenciados os casos de carga que fazem apenas uma pequena contribuição para os valores máximos e mínimos.
A segunda opção permite que o programa avalie automaticamente as combinações de resultados geradas temporariamente ou definidas pelo utilizador. De seguida, apenas as combinações de carga determinantes são criadas.
A terceira possibilidade para reduzir o número de combinações geradas é classificar apenas as ações selecionadas como ações principais.
As ferramentas para a geração facilitam a entrada de modelos paramétricos, tais como pórticos, naves, vigas treliçadas, escadas em caracol, arcos ou coberturas. Além disso, muitos geradores permitem a criação de casos de carga e carregamentos resultantes do peso, neve e vento.
As configurações de detalhes simples e extensas nas janelas de entrada facilitam a representação do sistema estrutural:
Apoios de nós e comprimentos efetivos
É possível editar o tipo de apoio de cada nó individual.
Em cada nó pode ser definido um reforço de empenamento. A mola de empenamento resultante é determinada automaticamente através dos parâmetros de entrada.
Fundações elásticas de barras
Para fundações elásticas de barras, é possível introduzir as constantes de mola manualmente.
Em alternativa, podem ser utilizadas as configurações de opções extensas e claras para definição da mola de rotação e translação a partir de uma zona de corte.
Molas de extremidade de barras
RF-/FE-LTB calcula as respetivas constantes de mola automaticamente. É possível utilizar os diálogos com imagens de detalhes para representar uma mola de translação através de um elemento de ligação, uma mola de rotação através de um pilar ligado ou um reforço de empenamento (tipos para seleção: perfil em U, cantoneira, pilar de ligação, parcela em consola).
Articulações de barra
Para o caso de ainda não terem sido definidas articulações de extremidade de barras no RFEM/RSTAB, é também possível defini-las no módulo.
Dados de carga
As cargas de nós e de barras para os casos e as combinações de cargas selecionados para o cálculo são representados em janelas separadas. Aí, podem ser editadas, eliminadas e completadas individualmente.
Imperfeições
As imperfeições são aplicadas automaticamente pelo RF-/FE-LTB, através de uma escala aplicada às formas próprias mais baixas.
O modelo do RFEM, o qual é constituído por barras e/ou superfícies, é analisado num ponto em particular aplicando uma carga unitária com a magnitude e direção da carga previamente definidas. O RF-INFLUENCE determina como a carga unitária afeta as reações internas sobre o ponto verificado.
Esta simulação é representada graficamente por uma linha de influência ou uma superfície de influência resultante da magnitude da carga da força ou do momento no ponto do modelo verificado. Esta representação gráfica pode ser utilizada para outras análises ou para verificar o comportamento do modelo.
O RF-INFLUENCE determina as linhas e superfícies de influência dos modelos contendo vigas e superfícies.