7403x
001623
2020-02-27

Нелинейный расчет фундаментной плиты из сталефибробетона в предельном состоянии по несущей способности с помощью RFEM

Сталефибробетон в настоящее время применяется в основном для изготовления полов промышленно-складских зданий, фундаментных плит с небольшими нагрузками, стен подвалов и цокольных этажей. С момента публикации в 2010 году первого руководства Немецкого комитета по железобетону (DAfStb) по сталефибробетону, инженеры-строители могут использовать нормативы для проектирования сталефибробетона. Фибробетон становится все более популярным в строительстве. В данной статье описывается нелинейный расчет фундаментной плиты из сталефибробетона, находящейся в предельном состоянии по несущей способности, с помощью программы для расчета по МКЭ - RFEM.

В нашей предыдущей технической статье описывается, как определить характеристики сталефибробетона и применить полученные параметры материала в программе RFEM. Сталефибробетон без примесей применяется главным образом в изготовлении промышленных полов и фундаментных плит с небольшими нагрузками. Линейный упругий расчет внутренних сил у конструктивных элементов, армированных только волокном, не дает экономически эффективных результатов. Поэтому для предельной несущей способности обычно применяются методы расчета с учетом пластических деформаций. Однако данные методы не вполне подходят для расчета по предельному состоянию по пригодности к эксплуатации. Нелинейный расчет по МКЭ, напротив, можно выполнить всегда, независимо от анализируемого предельного состояния. На основе итерационно определенных внутренних сил мы выполним пошаговый расчет.

Ввод топологии и нагрузок

Зададим плиту основания как фундаментную поверхность. Основание фундаментной плиты в нашей технической статье определяется по методу «эффективного грунта» по Kolar и Nemec, [3]. Смежный грунт основания учитывается с помощью дополнительных линейных и одиночных пружин в углах (см. данную статью). Поверхностное упругое основание можно также рассчитать с помощью дополнительного модуля RF-SOILIN.

Расчет предельной несущей способности мы покажем с нагрузками от стеллажных стоек и нагрузкой под стеллажами. Нагрузки от стеллажных стоек зададим как свободные прямоугольные нагрузки. На стеллажных стойках зададим точки с измельчением сетки так, чтобы нагрузка, передаваемая на фундаментную плиту, была распределена по нескольким элементам.

Определение свойств материала

Модель материала "изотропное повреждение 2D/3D" в дополнительном модуле RF-MAT NL наилучшим образом отображает свойства сталефибробетона в RFEM. В качестве сталефибробетона применим бетон C30/37 L1.2/L0.9 по норме DIN EN 1992-1-1 [2] и руководству немецкого комитета DAfStb по сталефибробетону [1] с двумя классами исполнения L1/L2 = L1.2/L0.9. В нелинейном расчете применяется параболическое распределение в области сжатия кривой напряжения-деформации по п. 3.1.5 [2]. На следующем ниже рисунке показан характерный вид рабочей кривой вышеупомянутого сталефибробетона.

Для предельного состояния по пригодности к эксплуатации необходимо применить характеристическую кривую напряжение-деформация. В нелинейном расчете предельного состояния по несущей способности согласно главе 5.7 Руководства немецкого комитета DAfStb по сталефибробетону [1] необходимо применить следующее соотношение:

Rd = R (fcR; 1,04 ⋅ ffcrLi; fyR, ftr) / γR
где
1,04 ⋅ ffcrLi... расчетное среднее значение растягивающего напряжения сталефибробетона после образования трещин в соответствии с классами исполнения L1 или L2
fcR, fyR, ftR... соответствующее среднее значение прочности бетона согласно NA.10, DIN EN 1992-1-1 [2]
γR... частный коэффициент безопасности для прочности системы. У элементов из чистого сталефибробетона γR принимается равным 1,4.

Частный коэффициент безопасности γR можно учесть либо в прочности при вводе свойств материала, либо в действии нагрузки. В нашей статье мы применим глобальный частный коэффициент безопасности γR непосредственно при задании параметров нелинейной рабочей кривой. На рисунке 03 показана приведенная кривая напряжение-деформация для расчета предельного состояния по несущей способности в сравнении с характеристической кривой предельного рабочего состояния.

В нелинейных расчетах необходимо учитывать действие нагрузки поэтапно. Если расчет приращений нагрузки не стремится к пределу в рамках заданного максимального количества шагов итерации, то нужно увеличить максимальное количество шагов итерации в параметрах расчета. Кроме того, лучшая сходимость может быть достигнута при применении нелинейной модели материала, для которой нужно выбрать решатель асимметричного уравнения в параметрах расчета.

Расчет по предельному состоянию первой группы

Предельное состояние по несущей способности считается достигнутым, если

  • достигнуты критические значения предельной деформации сталефибробетона, εcu1 на сжатой стороне, εfct,u на растянутой стороне.
  • достигнуто критическое состояние безразличного равновесия во всей системе или в ее части.

После успешного выполнения нелинейного расчета фундаментной плиты нужно проверить максимальные и минимальные деформации на верхней и нижней сторонах. Если критические предельные деформации не превышены, то расчет по предельному состоянию по несущей способности выполнен.

Следующие значения деформаций были получены для предельного состояния первой группы.

Верхняя сторона:

  • максимальная деформация при сжатии εmin- = -1,9 ‰ < 3,5 ‰
  • максимальная деформация при растяжении εmax- = 4,2 ‰ < 25,0 ‰

Нижняя сторона:

  • максимальная деформация при сжатии εmin + = -1,05 ‰ < 3,5 ‰
  • максимальная деформация при растяжении εmax + = 9,9 ‰ < 25,0 ‰

На рисунке 05 показано максимальное деформирование верхней части (-z) фундаментной плиты.

При соблюдении предела деформаций было бы возможно успешное выполнение расчета в предельном состоянии по несущей способности при изгибе. В данном случае мы должны выполнить дополнительные расчеты по предельному состоянию первой группы, например, на продавливание.

Рекомендации по нелинейному расчету с применением модели материала "Изотропное повреждение 2D/3D"

Учитывая полигональное задание кривой напряжения-деформации, в RFEM предполагается, что модуль упругости сталефибробетона соответствует касательному модулю в начале кривой напряжения-деформации. Это означает, что при вводе рабочей кривой сталефибробетона необходимо также настроить параметры заданного секущего модуля бетона. Начиная от первой полигональной точки на сжатой или растянутой стороне рабочей кривой ожидается увеличение модуля упругости материала.

К данной технической статье прилагается файл Excel, который поможет вам при вводе и расчете точек кривой. В прилагаемом файле Excel, в зависимости от предельного состояния, по несущей способности или по пригодности к эксплуатации, можно задать требуемую кривую напряжения-деформации и перенести ее с помощью буфера обмена в диалоговое окно ввода в RFEM. Данный метод показан также в прилагаемом видеоролике.

Вы можете сохранить заданные диаграммы напряжения-деформации в программе RFEM и применить их в других проектах. Таким образом, в RFEM можно создать собственную библиотеку материалов для сталефибробетона.

Из-за высокой нелинейности нагрузка должна быть приложена с несколькими приращениями. Число приращений нагрузки необходимо выбрать таким образом, чтобы при первом приращении система осталась в линейно-упругом состоянии. Это улучшит сходимость расчета. Вы можете настроить количество приращений нагрузки глобально в параметрах расчета и локально для каждого сочетания нагрузок или нагружения. У фундаментной плиты, описанной выше, для расчетной нагрузки в предельном состоянии первой группы 20 приращений нагрузки оказались оптимальными для выполнения итерации. Мы задали 20 приращений нагрузки локально для сочетания нагрузок (рисунок 08).


Автор

Г-н Мейергофер является руководителем отдела разработки программ для расчета железобетонных конструкций.

Ссылки
Ссылки
  1. Stahlfaserbeton - Ergänzungen und Änderungen zu DIN EN 1992-1-1 in Verbindung mit DIN EN 1992-1-1/NA, DIN EN 206-1 in Verbindung mit DIN 1045-2 und DIN EN 13670 in Verbindung mit DIN 1045-3; DAfStb Stahlfaserbeton:2012-11
  2. Nationaler Anhang - National festgelegte Parameter - Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; DIN EN 1992-1-1/NA:2013-04
  3. Kolář, V.; Němec, I.: Modeling of Soil-Structure Interaction, 2. Auflage. Amsterdam: Elsevier Science Publishers with Academica Prague, 1989
Скачивания