11 结果
查看结果:

使用钢结构设计模块,可以按照不同的设计规范对钢杆件进行设计。 这其中包括截面承载力、稳定性和正常使用极限状态设计。 模型输入和计算结果分析完全集成在有限元软件 RFEM 和 RSTAB 的用户界面中。

本手册介绍了 RFEM 6 和 RSTAB 9 的钢结构设计模块。

在本教程中,我们想让您熟悉程序RFEM 6的基本功能和操作。 在第一部分中,我们定义了模型并进行了结构分析。 具体设计在第二部分进行。 最后,第三部分介绍了根据 EN 1993-1-1 和 CEN 设置的钢杆件设计。

在激活砌体设计模块后,专门为计算砌体结构而开发的材料模型会被激活。 通过使用被激活的材料模型可以表现砖和砂浆的非线性行为,并使用有限元法计算砌体结构。

砌体结构的设计验算是基于规范进行的。 内力和变形是根据规范规定的应力-应变曲线计算得出的。

本手册介绍了 RFEM 6 的砌体设计模块。

对于某些结构,长期效应例如徐变、收缩和龄期会影响内力的分布。 可以使用 RFEM 6 中的“时变分析”(TDA)模块来确定随时间变化的材料行为。

目前只考虑了杆件单元的随时间变化的材料行为的影响,以及混凝土材料的徐变效应。

“结构找形分析”模块可以找到受轴力作用的杆件和张力作用的面模型的最优形状。 其形状由构件轴向力或膜面应力和现有的边界条件之间的稳定平衡形态决定。

生成的带有外力条件的新模型形状可以作为普遍适用的初始状态用于整个结构的进一步计算。

使用建筑模型模块,您可以通过楼层来定义和操纵建筑物。 可以通过多种方式调整楼层。 有关楼层和整个模型(重心)的信息会显示在表格和图形中。

本手册介绍了 RFEM 6 的建筑模型模块。

土工分析模块允许在 RFEM 6 中使用合适的材料定律对土体进行有限元分析。 通过将岩土工程分析集成到有限元结构分析软件中,土-结构之间的相互作用可以在整个模型中完全通过计算得到体现。

使用岩土工程分析软件可以计算土层的应力和变形。 输入和结果评估集成在 RFEM 6 的用户界面中。

本手册介绍了 RFEM 6 的岩土分析模块。

优化和成本/CO2排放估算模块由两部分组成: 一方面,可以根据用户定义的优化准则确定参数化模型的最佳参数布置。 为此,我们使用了粒子群优化(PSO)的人工智能(AI)技术。 另一方面,您可以通过指定所用材料的单位成本和排放量来估算模型的成本和 CO2排放量。

本手册介绍了 RFEM 6 和 RSTAB 9 的模块功能。 介绍的功能不仅适用于 RFEM,也适用于 RSTAB。

本手册介绍了如何在 RFEM 6 中使用膜对体育馆屋顶进行建模。 由于该模型由多个分段组成,因此这里显示了如何创建每个分段。 每一节段都由一个主要结构(柱、加劲单元、索)和一个辅助结构(膜)组成。

本手册介绍了网络课堂“RFEM 6 和 RSTAB 9 中的钢结构分析”。 首先,介绍如何对桁架桥进行建模。 然后,通过该示例介绍如何施加荷载和进行荷载组合,以及稳定性分析和使用“钢结构设计”模块按照欧洲规范 3 进行计算。

钢结构设计模块手册中详细介绍了模块的所有选项。

本手册介绍了 RSTAB 9 中的所有步骤。 所有介绍同样适用于 RFEM 6。

本手册介绍了网络研讨会 “在 RFEM 6 中使用有限元法设计砌体” 的主题。

介绍了如何在 RFEM 6 中对砌体结构进行建模,并使用非线性正交各向异性材料模型进行计算。