该示例是验算示例 0061 的修改版;唯一的区别是容器的材料是不可压缩的。 An open‑ended, thick‑walled vessel is loaded by both inner and outer pressure. While neglecting self‑weight, the radial deflection of the inner and the outer radius is determined.

创建计算流体力学 (CFD) 验证示例是确保模拟结果准确性和可靠性的关键步骤。 此过程涉及将 CFD 模拟的结果与实际场景中的实验或分析数据进行比较。 目的是确保 CFD 模型能够如实地再现它将要模拟的物理现象。

风向是计算流体动力学 (CFD) 模拟以及建筑物和基础设施的结构设计的重要影响因素。 它是评估风荷载与结构相互作用的一种决定性系数,它会影响风压的分布,从而影响结构的响应。

遵守建筑规范(例如欧洲规范)对于确保建筑物和结构的安全性、结构完整性和可持续性至关重要。 计算流体力学 (CFD) 在这个过程中发挥着至关重要的作用,它可以模拟流体的行为、优化设计,并帮助建筑师和工程师满足欧洲规范在风荷载分析、自然通风、消防安全和能源效率方面的要求。 通过将 CFD 集成到设计过程中,专业人士可以建造更安全、更高效、更合规的建筑,并满足欧洲最高的建筑和设计标准。
.png?mw=512&hash=4a84cbc5b1eacf1afb4217e8e43c5cb50ed8d827)
概述了抗震分析的基本方法,介绍了它们的原理和应用,以及在哪些情况下使用它们的效率更高

在 RFEM 6 中,建筑模型中的荷载传递面和楼板之间存在分层控制。 也可以设计出由荷载传递面组成的墙体,例如幕墙。

生成剪力墙和深梁时,不仅可以分配面和单元,还可以生成杆件。

建筑模型的计算分两个阶段进行:
- 全局模型的全局三维计算,其中楼板作为刚性平面(刚性板)或作为受弯板
- 对个别楼层进行局部二维计算
三维计算和二维计算的结果可以在同一个模型中进行整合。 因此无需在板的 3D 模型和 2D 模型之间进行切换。 用户只需使用一个模型,不仅可以节省宝贵的时间,还可以避免在 3D 模型和 2D 模型之间手动交换数据时可能出现的错误。
模型中的竖向面可分为剪力墙和洞口过梁。 程序会自动从这些墙对象生成内部结果杆件,然后可以根据在 RFEM 6 的混凝土设计模块中选定的规范进行设计。

有以下几种建模工具可供选择:
- 竖线
- 柱
- 墙
- 梁杆件
- 矩形天花板
- 多边形楼板
- 天花板上的矩形洞口
- 多边形天花板洞口
用户可以使用该功能在空间中定义平面单元(例如背景层),并在空间中创建多单元网格。