钢筋混凝土梁,肋梁,板梁:接缝位置受剪承载力

技术文章

施工过程中经常需要考虑各个建筑构件分段施工。装配整体式结构分段施工最常用的方法是使用预制混凝土叠合梁,再在桁架钢筋混凝土叠合板上后浇筑混凝土叠合层。后期浇筑的结构构件会在已经硬化的混凝土与后浇筑混凝土之间的位置出现缝隙。装配整体式混凝土结构的各个构件的接缝位置必须验算其受剪承载力。

Shear Joint Resistance

In EN 1992-1-1, designs imply the calculational shear stresses. In this case, the joint strength is composed of the proportions of the adhesive bonding (vRdi,ad), the friction at the interface (vRdi,r), and the shear force reinforcement part (vRdi,sy) from the clamping and anchor effect, whereby the maximum shear resistance is limited by the reduced compressive strength (vRdi,max) of the new or old concrete.

vRdi = vRdi,ad + vRdi,r + vRdi,sy ≤ vRdi,max

Figure 01 - Design Model of Composite Joint Strength According to [1]

The existing shear reinforcement can be applied as the bond reinforcement. The design value of the shear resistance is calculated and divided into the individual components, as follows:

vRdi = c · fctd + μ · σn + ρ · fyd · (1,2 μ · sin α + cos α) ≤ 0,5 · ν · fcd

where

c, μ and ν are factors which depend on the roughness of the interface

  • indented: c = 0.50 | μ = 0.90 | ν = 0.70
  • rough: c = 0.40a) | μ = 0.70 | ν = 0.50
  • smooth: c = 0.20a) | μ = 0.60 | ν = 0.20
  • very smooth: c = 0b) | μ = 0.50 | ν = 0

a) Tension across the interface: c = 0.
b) Higher factors must be based on the corresponding designs.
fctd is the design value of concrete tensile strength according to 3.1.6 (2)P
σn is stress per unit area caused by the minimum external normal force across the interface that can act simultaneously with the shear force (positive for compression)

ρ = As / Ai
As is the area of reinforcement crossing the interface, including ordinary shear reinforcement (if any), with adequate anchorage at both sides of the interface
Ai is the area of the joint, transferred by the shear

α is the inclination angle of the reinforcement, limited by 45° ≤ α ≤ 90°

The classification of surfaces as very smooth, smooth, rough, or indented depends on the specific conditions during concreting, concrete properties and concrete cure, and the relevant literature can be applied.

Design Shear Stress at Interface

The design value of the shear stress in the interface is determined as follows:

$$ v_{Edi}\;=\;\beta\;\cdot\;\frac{V_{Ed}}{z\;\cdot\;b_i}$$

where

β is the ratio of the longitudinal force in the new concrete area and the total longitudinal force either in the compression or tension zone in the section considered
VEd is the transverse shear force
z is the lever arm of the composite section
bi is the width of the interface

Alternatively, you can calculate the shear force on the basis of the longitudinal force difference in the new concrete area by using the general stress integration. For this, click the [Details] button in the module and in the 'Ultimate Limit State' tab, select the option 'Difference of longitudinal force in the added concrete part from general integration of stresses'. In contrast to the standard provisions, this option also considers the moment Mz,Ed.

Design of Shear Joints

The shear joint design is based on the relation vEdivRdi.

Considering Shear Joints in RF-CONCRETE Members

In RF-CONCRETE Members, the shear joints can be taken into account in Window 1.6 Reinforcement under the 'Shear Joint' tab. After selecting the "Shear joint available" option, all other options for the exact description of the shear joint become accessible. Here, you can define the position of the shear joint precisely. There is the 'Transition plate-web' option, which, on one hand, is probably the most frequently used option in the case of T-beams. On the other hand, it is also possible to specify the distance from the top or bottom side of the beam.

In the list box, you can select the surface classification in accordance with EN 1992-1-1, 6.2.5 (2). The applied parameters are displayed in the list. If necessary, you can adjust the parameters by changing the design standard or National Annex.

Figure 02 - Activation and Control of Shear Joint Design in RF-CONCRETE Members

Also, you can select whether to apply EN 1992-1-1, 6.2.5 (5) when neglecting the adhesion component of the concrete bonding in the case of dynamic or fatigue loads.

In order to determine the correct joint width, it is necessary to enter the width of support of the connected element slabs. It is important to ensure that this value is not greater than the lateral concrete cover, if possible, otherwise the shear reinforcement cannot be inserted, thus the design not fulfilled.

Last but not least, you can define normal stress across the joint surface. Here, the minimum normal force across the interface that can act simultaneously with the shear force should apply. For compression, the force is positive, and for tension, the force is negative. If there is the tensile force, the adhesion component of the concrete bonding set to 0 and not applied.

Results of Shear Joint Design

Windows 2.1 to 2.4 show the resulting required reinforcement. These results can be displayed by cross-section, by set of members, by member, or by x-location. The result of the required reinforcement for the shear joint is displayed together with the result of the shear reinforcement asw,V,stirrup. In the 'Detailed Results' table, you can see some intermediate values of the shear joint design. These intermediate values are listed under 'Shear at the interface between concrete cast at different times'.

Figure 03 - Results of Shear Joint Design

If Note 936) appears next to the value of asw,V,stirrup, it means that the bond reinforcement of the shear joint is governing for the shear reinforcement design.

Reference

[1]  Fingerloos, F.; Hegger, J.; Zilch, K. (2016). Eurocode 2 für Deutschland - Kommentierte Fassung (2nd ed.). Berlin: Beuth.
[2]  Manual RF-/CONCRETE Members. (2011).Tiefenbach: Dlubal Software. Download.

更多信息

联系我们

联系 Dlubal

如果您有任何关于我们产品的问题或者建议,请联系我们的技术支持或者搜索我们的问题和解答 (FAQs)。

+49 9673 9203 0

(可要求接中文热线)

info@dlubal.com

RFEM 主程序 RFEM
RFEM 5.xx

主程序

结构设计与有限元­分析软件(FEA)可以用于建立平面与空间结构模型,适用于由杆件、面、板、墙、折板、膜、壳、实体以及接触单元等的建模与分析计算。

RSTAB 主程序
RSTAB 8.xx

主程序

空间结构设计与分析软件,主要用于框架、梁与桁架等空间结构的建模与计算。可以输出内力、变形与制作反力的线性与非线性的计算结果。

RFEM 混凝土结构
RF-CONCRETE 5.xx

附加模块

钢筋混凝土杆件和面设计(板、墙、折板和壳)

RSTAB 钢筋混凝土结构
CONCRETE 8.xx

附加模块

钢筋混凝土结构线性和非线性设计