8449x
001660
2020-10-14

Динамический расчет конструкций под воздействием взрывных нагрузок

В данной статье будут представлены разные сценарии взрыва, вызванного удаленной детонацией в модуле RF-DYNAM Pro - Forced Vibrations, и его эффекты, отраженные в линейном анализе изменений во времени.

Основные данные

Конструкция должна быть спроектирована и изготовлена таким образом, чтобы она могла противостоять возможным воздействиям и влиянию, выходящему за рамки срока ее службы, а также удовлетворяла бы требованиям по пригодности к эксплуатации. В связи с этим загружения классифицируются в соответствии с их временным изменением следующим образом:

  • Постоянные нагрузки (например, собственный вес)
  • Переменные нагрузки (например, полезные нагрузки, снеговые и ветровые нагрузки)
  • Чрезвычайные нагрузки (например, взрыв или удар транспортного средства)

В данной статье рассмотрены чрезвычайные нагрузки от взрыва. Чрезвычайное воздействие имеет кратковременный характер и происходит с незначительной вероятностью. Однако оно может иметь серьезные последствия для устойчивости конструкции.

Взрыв - это внезапная, чрезвычайно быстро протекающая "реакция окисления или распада с резким повышением температуры и давления. Это приводит к внезапному увеличению объема газов и выделению большого количества энергии в небольшом пространстве (...). Внезапное расширение объема вызывает волну давления, которая может быть описана с помощью модели детонационной волны в случае идеального взрыва (исходящего от точечного источника)." [1] Кроме нагрузки от ударной волны взрыв вызывает и другие воздействия от высоких температур и выбрасываемых фрагментов (осколков, мусора). В нашей статье нагрузка на конструкцию от удаленной детонации представлена в виде чистой нагрузки от ударной волны без дальнейших воздействий взрыва.

Нагрузка от ударной волны при удаленной детонации

Нагружение воздушной ударной волной можно схематически представить в виде кривой зависимости давления от времени (из [2]).

Высвобожденная воздушная ударная волна с пиковым сверхвысоким давлением внезапно ударяет по конструкции. Данный процесс включает в себя фазу сверхдавления, которое действует на конструкцию в течение времени td, которая переходит в фазу разрежения до достижения давления окружающего воздуха. Данный экспоненциальный процесс часто упрощается до диапазона сверхдавления. При этом можно рассчитать виртуальное время t~d (t~d < td), в течение которого процесс приводится к линейному виду и описан с помощью импульса одинаковой величины, но полностью не принимается во внимание фаза разрежения.

Определяющими исходными значениями для расчета детонации являются расстояние до центра взрыва R и масса взрывного вещества в тротиловом эквиваленте MTNT. Следующие формулы относятся к модели загружения, разработанной в [2]. По двум вводным значениям R и MTNT определяется масштабированное расстояние Z.

Далее рассчитываются значения максимального пикового сверхдавления, положительного удельного импульса и коэффициента формы. Коэффициент формы оказывает существенное влияние на протекание фазы разрежения.

На следующем этапе мы можем выполнить расчет длительности воздействия положительного давления td, а также виртуальной длительности воздействия положительного давления t~d.

Для получения кривой давление-время нужно определить значения коэффициента отражения для фазы сверхвысокого давления cr и коэффициента отражения для фазы разрежения c-r. Предполагается, что поверхность отражения является бесконечной и перпендикулярной. Более подробную информацию о соответствующих значениях вы найдете в литературе [2].

Из всех найденных значений можно, с помощью модели загружения для полного отражения зависимости давление-время

и выбранных функций нагрузки, отобразить загружения в RF-DYNAM Pro - Forced Vibrations в виде временных диаграмм (функций).

Ввод данных в RF-DYNAM Pro - Forced Vibrations

В дополнительном модуле функции нагрузки могут быть заданы в виде временных диаграмм. Временные диаграммы можно задать как переходные, периодические либо непосредственно в виде функции. Они определяют возбуждение конструкции в определенной точке. Положение нагрузки устанавливается в статических загружениях. При этом можно задать практически любой тип нагрузки. Статические загружения связаны с временными диаграммами. Это происходит в динамических загружениях. Множитель k используется для определения конечной величины возбуждающей силы.

Для последующих расчетов смоделируем удаленную детонацию MTNT = 1 кг на расстоянии R = 10 м. При использовании параметрического ввода мы получим следующие значения.

В перечне параметров, сохраненном в файле модели RFEM, требуется лишь откорректировать значения R и MTNT. Если они лежат в области значений масштабированного расстояния 5 < Z < 30, тогда можно применить расчетную модель из [2].

С помощью значений, рассчитанных в перечне параметров, зададим в дополнительном модуле исходные данные для четырех изображенных временных диаграмм, как показано ниже. При этом - как и во многих численных программах - давление не возникает непосредственно в момент времени t = 0 с, а в нашем примере начиная с t = 0,01 с. Для применения требуемых функций предлагается использовать вложенные функции If.

Чтобы сравнить четыре функции в одном файле, нужно проанализировать четыре идентичных подсистемы в динамическом загружении. Каждой подсистеме присваивается загружение, в котором на переднюю поверхность действует нагрузка 1 кН/м². Каждой подсистеме присваивается своя временная диаграмма, и, таким образом, отличная функция нагрузки.

Наконец, введем для подсистем затухание Рэлея, которое можно задать по двум преобладающим собственным формам подсистем в рассматриваемом направлении.

Результаты

После расчета и получения результатов мы можем сравнить в данном файле четыре функции нагрузки и их влияние на подсистемы. В нашей статье мы коротко сравним только ускорение и перемещение в глобальном направлении X. Результаты можно проанализировать в интерфейсе программы в навигаторе результатов. Здесь можно отобразить различные результирующие значения для рассчитанных временных шагов. Кроме того, после анализа динамического загружения, мы получим доступ к временной диаграмме, на которой можно отобразить и сравнить дальнейшие значения в точках. В данном случае мы рассмотрим значения в центре передних поверхностей.

Применение постоянного импульса p1(t) приводит, как и ожидалось, к наибольшим значениям. Оба линеаризованных распределения p2(t) и p3(t) очень подобны, при этом, как и ожидалось значения p2(t) > p3(t). Наконец, диаграмма p4(t) ясно показывает, что нельзя забывать о фазе разрежения, а на конструкцию влияют более высокие значения, чем при обычном линеаризованном процессе p3(t).

Заключение

Отображение реальной кривой давление-время при удаленной детонации с помощью временных диаграмм в RF-DYNAM Pro - Forced Vibrations - это эффективный способ определения воздействия фаз сверхдавления и разрежения на конструкцию. Параметризация модели с помощью корректировки значений R и MTNT позволяет отобразить и сравнить различные сценарии детонации.


Автор

Г-н Хоффманн отвечает за разработки в области динамического расчета, мембранных конструкций и RWIND. Кроме того, он оказывает также техническую поддержку нашим клиентам.

Ссылки
Ссылки
  1. Lexikon chemie.de: Explosion
  2. Teich, M.: Berichte aus dem Konstruktiven Ingenieurbau - Interaktionen von Explosionen mit flexiblen Strukturen. Neubiberg: Universität der Bundeswehr München, 2012