8455x
001660
14.10.2020

Dynamická analýza konstrukcí při zatížení od výbuchu

V tomto příspěvku si ukážeme znázornění scénářů výbuchu při vzdálené detonaci v modulu RF-DYNAM Pro - Forced Vibrations a účinky porovnáme při lineární časové analýze.

Základy

Konstrukci je třeba navrhnout a provést tak, aby odolávala možným zatížením a vlivům po dobu přesahující její životnost a aby také splňovala požadavky na použitelnost. V tomto ohledu se zatížení rozdělují podle proměny v čase:

  • Trvalá zatížení (například vlastní tíha)
  • Proměnná zatížení (např. užitná zatížení, zatížení sněhem a větrem)
  • Mimořádná zatížení (například výbuch nebo náraz vozidla)

Tématem našeho článku je mimořádné zatížení od výbuchu. Mimořádné zatížení má z časového hlediska pouze krátkou dobu trvání a vyskytuje se jen s nepatrnou pravděpodobností. Může mít ovšem závažné důsledky pro stabilitu konstrukce.

Výbuch je prudká a extrémně rychle probíhající „oxidační nebo rozkladná reakce s náhlým vzrůstem teploty a tlaku. Přitom dochází k náhlému zvětšení objemu plynů a k uvolnění velkého množství energie v malém prostoru (...). Náhlé zvětšení objemu vyvolá tlakovou vlnu, kterou lze v případě ideálního (z jediného bodového zdroje vycházejícího) výbuchu popsat modelem detonační vlny.“ [1] Výbuch vyvolává kromě zatížení nárazem vzduchu další zatížení vysokými teplotami a letícími fragmenty (střepy, úlomky). V tomto příspěvku znázorníme zatížení při vzdálené detonaci jako prosté zatížení nárazem vzduchu a další účinky výbuchu ponecháme stranou.

Zatížení nárazem vzduchu při vzdálené detonaci

Zatížení nárazem vzduchu lze schematicky znázornit jako křivku závislosti tlaku na čase ([2]).

Uvolněná vzdušná rázová vlna s vrcholným přetlakem prudce zasáhne konstrukci. Průběh zahrnuje přetlakovou fázi, která na konstrukci působí po dobu ta kterou následuje fáze podtlaková až po dosažení tlaku okolního vzduchu. Tento exponenciální průběh bývá často zjednodušován na oblast přetlaku. Přitom lze spočítat virtuální čas t~d (t~d < td), v němž se průběh linearizuje a popisuje impulzem stejné hodnoty, který ovšem zcela opomíjí fázi podtlaku.

Rozhodujícími vstupními hodnotami pro výpočet exploze jsou vzdálenost od centra výbuchu R a hmotnost MTNT ekvivalentní nálože TNT. Následující vzorce se vztahují k modelu zatížení vytvořenému v [2]. Z obou vstupních hodnot R a MTNT se stanoví redukovaná vzdálenost Z.

Následně se vypočítají maximální vrcholný přetlak, kladný specifický impulz a tvarový součinitel. Tvarový součinitel má značný vliv na průběh podtlakové fáze.

V dalším kroku lze spočítat dobu trvání kladné fáze td a také virtuální dobu trvání kladné fáze t~d.

Pro stanovení průběhu odrazného tlaku v čase se stanoví součinitel odrazu pro přetlakovou fázi cr a součinitel odrazu pro podtlakovou fázi c-r. Vychází se přitom z kolmé, nekonečně dlouhé odrazné plochy. Pro podrobnější informace o příslušných hodnotách odkazujeme na [2].

Ze všech stanovených hodnot pak můžeme za použití modelu zatížení pro kompletní průběh odrazného tlaku v čase

a vybraných zatěžovacích funkcí znázornit zatížení v modulu RF-DYNAM Pro - Forced Vibrations jako časové diagramy (funkce).

Zadání v modulu RF-DYNAM Pro - Forced Vibrations

Funkce zatížení lze v přídavném modulu zadávat jako časové diagramy. Časové diagramy lze zadat přechodné, periodické nebo přímo jako funkci. Definují buzení konstrukce v určité pozici. Poloha zatížení se stanoví ve statických zatěžovacích stavech. Lze přitom zadat téměř jakýkoli typ zatížení. Statické zatěžovací stavy jsou propojeny s časovými diagramy v dynamických zatěžovacích stavech. Násobitel k se používá pro stanovení konečné velikosti budicí síly.

Pro následující výpočty modelujeme vzdálenou explozi MTNT = 1 kg ve vzdálenosti R = 10 m. Při parametrickém zadání dostaneme následující hodnoty.

V seznamu parametrů uloženém v souboru modelu RFEM je třeba pouze upravit hodnoty pro R a MTNT. Pokud leží v rozmezí hodnot pro redukovanou vzdálenost 5 < Z < 30, lze použít výpočetní model popsaný v [2].

Na základě vypočítaných hodnot v seznamu parametrů zadáme v přídavném modulu vstupní údaje pro čtyři znázorněné časové diagramy. Přitom - stejně jako v mnoha numerických programech - se tlak neuvažuje okamžitě při t = 0 s, ale v našem příkladu od t = 0,01 s. Pro požadované funkce se nabízí použití vnořených funkcí If.

Pro porovnání těchto čtyř funkcí v jednom souboru se analyzují čtyři identické dílčí systémy v dynamickém zatěžovacím stavu. Každému dílčímu systému se přiřadí zatěžovací stav, v němž na přední plochu působí zatížení 1 kN/m². Každému dílčímu systému se přiřadí jiný časový diagram, a tedy jiná zatěžovací funkce.

Nakonec se zadá Rayleighovo tlumení dílčích systémů, které lze určit z obou rozhodujících vlastních tvarů těchto dílčích systémů v uvažovaném směru.

Výsledky

Po výpočtu a stanovení výsledků lze v daném souboru porovnat čtyři zatěžovací funkce a jejich účinky na dílčí systémy. V našem článku krátce porovnáme pouze zrychlení a posun v globálním směru X. Výsledky lze vyhodnotit v uživatelském prostředí programu v navigátoru Výsledky. Zobrazit zde lze různé výsledné hodnoty pro vypočítané časové kroky. Po analýze dynamického zatěžovacího stavu máme dále k dispozici časový diagram, v němž můžeme zobrazit další hodnoty v bodech a také je porovnat. Zde se podíváme na hodnoty uprostřed předních ploch.

V případě konstantního impulzu p1(t) jsou podle očekávání vykázány největší hodnoty. Oba linearizované průběhy p2(t) a p3(t) jsou velmi podobné, přičemž dle očekávání jsou hodnoty p2(t) > p3(t). Průběh p4(t) nakonec ukazuje, že podtlakovou fázi nelze opomíjet a že ve srovnání s běžným linearizovaným průběhem p3(t) působí na konstrukci větší hodnoty.

Závěr

Znázornění reálné křivky závislosti tlaku na čase při vzdálené explozi pomocí časových diagramů v modulu RF-DYNAM Pro - Forced Vibrations představuje účinný způsob, jak stanovit vlivy přetlakové a podtlakové fáze na konstrukci. Parametrizace modelu umožňuje při úpravě R a MTNT zobrazit a porovnat různé scénáře výbuchu.


Autor

Ing. Hoffmann se zabývá vývojem produktů pro dynamiku, membránové konstrukce a RWIND. Kromě toho vyřizuje v rámci zákaznické podpory podněty od uživatelů.

Odkazy
Reference
  1. Lexikon chemie.de: Explosion
  2. Teich, M.: Berichte aus dem Konstruktiven Ingenieurbau - Interaktionen von Explosionen mit flexiblen Strukturen. Neubiberg: Universität der Bundeswehr München, 2012