Este artículo analiza y compara el efecto de palanca en tres tipos de conexiones: una conexión con ala anular, una chapa frontal completa y un ala anular rigidizada.
Al calcular estructuras regulares, la entrada de datos a menudo no es complicada pero requiere mucho tiempo. Ahorre su valioso tiempo con la automatización de la entrada de datos. La tarea descrita en el presente artículo es considerar las plantas de una casa como etapas de construcción individuales. Los datos se introducen utilizando un programa C# para que el usuario no tenga que introducir los elementos de las plantas individuales manualmente.
Este artículo le mostrará cómo definir nervios longitudinales en una placa de barra utilizando el componente "Nervio" en el complemento Uniones de acero.
Este artículo establece un paralelo entre la generación de una malla de elementos finitos (EF) para objetos separados usando la opción "Malla independiente preferida" y la generación de la malla sin usar dicha opción.
Utilizando el complemento Cálculo de acero, es posible el cálculo de acero según la norma AISC 360-22. El siguiente artículo comparará la salida de resultados al calcular el pandeo lateral según el capítulo F frente a un análisis de valores propios.
Este artículo se centra en los aspectos específicos del diseño de estructuras de con membranas que tienen requisitos específicos, como la búsqueda de forma y la generación de patrones de corte. Una parte integral del diseño de estas estructuras es el proceso de encontrar formas pretensadas adecuadas y generar patrones de corte. El texto describe brevemente dos procesos básicos en el diseño de estructuras con membranas. Se explican los principios físicos y se ilustran las tesis individuales con ejemplos.
En ingeniería estructural, la predicción de los efectos de los flujos de viento turbulentos en las estructuras es crucial para la seguridad y el rendimiento. El modelado de la turbulencia en la dinámica de fluidos computacional (CFD) ayuda a simular estas interacciones. Engineers must choose a practical turbulence model by balancing efficiency, accuracy, and applicability. Los modelos comunes incluyen el promedio de Reynolds de Navier-Stokes (RANS), el promedio de Reynolds inestable de Navier-Stokes (URANS) y la simulación de remolinos separados retardados (DDES). RANS es robusto y rentable para flujos estacionarios, URANS captura fenómenos dependientes del tiempo para inestabilidades moderadas y DDES, un híbrido de RANS y Large Eddy Simulation (LES), resuelve estructuras turbulentas complejas. Comprender las fortalezas y limitaciones de cada modelo ayuda a los ingenieros a seleccionar el mejor enfoque para sus aplicaciones.
La evaluación de la deriva de las plantas en un edificio es crucial para garantizar un rendimiento estructural aceptable al limitar la cantidad de deriva. Una deriva excesiva tiene el potencial de inducir la inestabilidad del sistema y puede causar daños a los componentes no estructurales, como los tabiques. Este artículo describe el procedimiento para establecer el desplazamiento entre plantas según ASCE 7-22 y el complemento Modelo de edificio en RFEM 6.
Comprender la rigidez de las conexiones de acero es crucial en el diseño estructural. A menudo, las conexiones se tratan como estrictamente articuladas o rígidas, pero esto puede conducir a diseños poco económicos o incluso peligrosos. Explore cómo RFEM y el complemento Uniones de acero de Dlubal Software ayudan a verificar la rigidez de las conexiones y el momento resistente, asegurando comprobaciones de diseño más seguras y económicas.
El pandeo lateral (LTB) es un fenómeno que se produce cuando una viga o barra estructural se somete a flexión y el ala comprimida no está lo suficientemente apoyada lateralmente. Esto conduce a una combinación de desplazamiento lateral y torsión. Es una consideración crítica en el diseño de elementos estructurales, especialmente en vigas y vigas esbeltas.
El intercambio de datos entre RFEM 6 y Allplan se puede realizar utilizando varios formatos de archivo. Este artículo describe el intercambio de datos de una armadura de piel determinada utilizando la interfaz ASF. Esto le permite mostrar los valores de la armadura de RFEM como curvas de nivel o imágenes de armadura de colores en Allplan.
Los tres tipos de pórticos resistentes a momento (Ordinario, Intermedio, Especial) están disponibles en el complemento Cálculo de estructuras de acero de RFEM 6. El resultado del cálculo sísmico según AISC 341-22 se clasifica en dos secciones: requisitos de barras y requisitos de conexión.
Cuando las presiones superficiales inducidas por el viento en un edificio están disponibles, se pueden aplicar en un modelo estructural en RFEM 6, procesar con RWIND 2 y usar como cargas de viento para el análisis estático en RFEM 6.
RWIND 2 y RFEM 6 ahora se pueden usar para calcular cargas de viento a partir de presiones de viento medidas experimentalmente en superficies. Básicamente, hay dos métodos de interpolación disponibles para distribuir las presiones medidas en puntos aislados a través de las superficies. La distribución de presión deseada se puede lograr utilizando el método y la configuración de parámetros apropiados.
Para evaluar si también es necesario considerar el análisis de segundo orden en un cálculo dinámico, se proporciona el coeficiente de sensibilidad del desplome entre plantas θ en los apartados 2.2.2 y 4.4.2.2 de EN 1998-1. Se puede calcular y analizar utilizando RFEM 6 y RSTAB 9.
El complemento Cálculo de acero en RFEM 6 ahora ofrece la capacidad de realizar el cálculo sísmico según AISC 341-16 y AISC 341-22. Actualmente hay disponibles cinco tipos de sistemas resistentes a fuerzas sísmicas (SFRS).
Los tres tipos de pórticos resistentes a momento (Ordinario, Intermedio, Especial) están disponibles en el complemento Cálculo de estructuras de acero de RFEM 6. El resultado del cálculo sísmico según AISC 341-16 se clasifica en dos secciones: requisitos de barras y requisitos de conexión.
El cálculo de estructuras resistentes a flexión según AISC 341-16 ahora es posible en el complemento Cálculo de estructuras de acero de RFEM 6. El resultado del cálculo sísmico se clasifica en dos secciones: requisitos de barras y requisitos de conexión. Este artículo trata sobre la resistencia necesaria de la conexión. Se presenta un ejemplo de comparación de los resultados entre RFEM y el Manual de diseño sísmico de AISC.
El cálculo de un pórtico ordinario arriostrado concéntricamente (OCBF) y un pórtico especial arriostrado concéntricamente (SCBF) se puede llevar a cabo en el complemento Cálculo de acero de RFEM 6. El resultado del cálculo sísmico según AISC 341-16 y 341-22 se clasifica en dos secciones: Requisitos de barras y requisitos de conexiones.
La creación de un ejemplo de validación para la dinámica de fluidos computacional (CFD) es un paso crítico para garantizar la precisión y fiabilidad de los resultados de la simulación. Este proceso implica la comparación de los resultados de las simulaciones de CFD con datos experimentales o analíticos de escenarios del mundo real. El objetivo es establecer que el modelo de CFD pueda replicar fielmente los fenómenos físicos que se pretende simular.
La dirección del viento juega un papel crucial en la configuración de los resultados de las simulaciones de dinámica de fluidos computacional (CFD) y el diseño estructural de edificios e infraestructuras. Es un factor determinante para evaluar cómo interactúan las fuerzas del viento con las estructuras, influyendo en la distribución de las presiones del viento y, en consecuencia, en las respuestas estructurales.
Cuando se trata de cargas de viento en estructuras de tipo edificio según ASCE 7, se pueden encontrar numerosos recursos para complementar las normas de diseño y ayudar a los ingenieros con esta aplicación de carga lateral. De todas formas, a los ingenieros/as les puede resultar más difícil encontrar recursos parecidos para las cargas de viento o para el tipo de estructuras que no son de construcción. Este artículo examinará los pasos para calcular y aplicar cargas de viento según ASCE 7-22 en un tanque circular de hormigón armado con una cubierta de cúpula.
Para diseñar correctamente una viga de cuelgue o una viga en T en RFEM 6 y usando el complemento Cálculo de hormigón, es esencial determinar los anchos del ala para las barras del nervio. Este artículo describe las opciones de entrada de datos para una viga de dos vanos y el cálculo de las dimensiones del ala según EN 1992-1-1.