计算板在进行线性翘曲分析时的临界荷载系数

技术文章

屈曲计算的基础是使用有效宽度方法或者折算应力法计算结构的屈曲荷载,也就是通常所说的 LBA 线性屈曲分析。本文将简单阐述分析方法计算屈曲荷载系数的步骤以及如何使用有限元方法(FEM)计算。

Critical Load Factors Relating to Stress

[1] provides the following equation (Chap. 10, Eq. 10.6) for a pure analytical determination of the critical load factor of a buckling panel:
$$\frac1{\alpha_{cr}}\;=\;\frac{1\;+\;\psi_x}{4\;\cdot\;\alpha_{cr,x}}\;+\;\frac{1\;+\;\psi_z}{4\;\cdot\;\alpha_{cr,z}}\;+\;\left[\left(\frac{1\;+\;\psi_x}{4\;\cdot\;\alpha_{cr,x}}\;+\;\frac{1\;+\;\psi_z}{4\;\cdot\;\alpha_{cr,z}}\right)^2\;+\;\frac{1\;-\;\psi_x}{2\;\cdot\;\alpha_{cr,x}^2}\;+\;\frac{1\;-\;\psi_z}{2\;\cdot\;\alpha_{cr,z}^2}\;+\;\frac1{\alpha_{cr,\tau}^2}\right]^{1/2}$$

As you can see, stress ratios as well as critical load factors are determined separately for the individual stress components or must be known. You can determine the critical load factors by recalculating the critical plate buckling stresses. This determination has already been explained in this technical article.

Thus, the following relations result for the individual stress components:
$$\begin{array}{l}\alpha_{cr,x}\;=\;\frac{\sigma_{cr,p,x}}{\sigma_{x,Ed}}\\\alpha_{cr,z}\;=\;\frac{\sigma_{cr,p,z}}{\sigma_{z,Ed}}\\\alpha_{cr,\tau}\;=\;\frac{\tau_{cr,p}}{\tau_{Ed}}\end{array}$$

This method is particularly suitable for unstiffened or longitudinally stiffened buckling plates that apply the corresponding buckling values from [2] or [3].

Calculation Using Finite Element Analysis

If there is a strongly stiffened buckling plate with longitudinal and transverse stiffeners, the FEM calculation should be used to determine the critical load on the entire structure. As a basis, you should apply a surface model and consider all boundary conditions (for example, supports at the edges, the geometrical position and stiffener loading as well as boundary stresses). For the determination according to LBA, elastic material behaviour is applied. The following example shows modelling of a longitudinally stiffened buckling plate in RFEM.

Figure 01 - FE Model of Longitudinally Stiffened Buckling Plate

The RF-STABILITY add-on module is used to determine the critical load factor. When selecting a mode shape, the global system failure must be taken into account.

Figure 02 - Results of Mode Shapes

The first mode shape in this example shows global buckling and is therefore to be regarded as governing. However, higher mode shapes may be relevant for design in some cases. Thus, the critical load factor can be calculated for all stress components as well as separately (only one stress component per load case).

The stand-alone program PLATE-BUCKLING allows you to perform a complete buckling analysis using the reduced stress method, including automatic determination of eigenvalues for each stress component.

Critical Load Factor in Buckling Analysis

Now, it is possible to either determine the individual critical load factors and then analytically calculate the total critical load factor by using Eq. 10.6 provided in [1], or to use them directly from the FEM calculation. In some cases, the analytical solution may be regarded as conservative. Therefore, PLATE-BUCKLING provides the following options.

Figure 03 - Calculate Critical Load Factor Analytically or Using Finite Element Analysis

Reference

[1]  Eurocode 3: Design of steel structures - Part 1-5: Plated structural elements; EN 1993-1-5:2006 + AC:2009
[2]  Klöppel, K., & Scheer, J. (1960). Beulwerte ausgesteifter Rechteckplatten, Band 1. Berlin: Wilhelm Ernst & Sohn.
[3]  Klöppel, K., & Scheer, J. (1968). Beulwerte ausgesteifter Rechteckplatten, Band 2. Berlin: Wilhelm Ernst & Sohn.

更多信息

联系我们

联系 Dlubal

如果您有任何关于我们产品的问题或者建议,请联系我们的技术支持或者搜索我们的问题和解答 (FAQs)。

+49 9673 9203 0

(可要求接中文热线)

info@dlubal.com

RFEM 主程序 RFEM
RFEM 5.xx

主程序

结构设计与有限元­分析软件(FEA)可以用于建立平面与空间结构模型,适用于由杆件、面、板、墙、折板、膜、壳、实体以及接触单元等的建模与分析计算。

RFEM 钢结构和铝合金结构
RF-PLATE-BUCKLING 5.xx

附加模块

加劲或非加劲板的屈曲分析

RFEM 其他附加模块
RF-STABILITY 5.xx

附加模块

按照特征值法的稳定性分析附加模块

独立程序 钢结构
PLATE-BUCKLING 8.xx - Stand-Alone

独立程序

加劲或非加劲板的屈曲分析